تصميم التمثيلات التعبيرية للكيانات والعلاقات في الرسم البياني المعرفي هو مسعى مهم. في حين أن العديد من الأساليب الحالية تركز بشكل أساسي على التعلم من الأنماط العلائقية والمعلومات الهيكلية، فقد تم تجاهل التعقيد الجوهري لكي كيانات KG أكثر أو أقل. بشكل أكثر ملاءمة، نفترض كيانات KG قد تكون أكثر تعقيدا مما نعتقد، أي، قد يرتدي الكيان العديد من القبعات والأحدث العلائقية قد تشكل بسبب أكثر من سبب واحد. تحقيقا لهذه الغاية، تقترح هذه الورقة التعلم من تمثيلات DESENTANGLED من كيانات كيغ كيغ - وهي طريقة جديدة تقوم بتخفيف الخصائص الكامنة الداخلية لكي كيانات كيغ كيانات. تعمل عملية DESTANGLED الخاصة بنا على مستوى الرسم البياني ويتم الاستفادة من آلية الحي لزيادة الخصائص المخفية لكل كيان. هذا النهج التعلم في التمثيل هذا هو نموذج غير مرجح ومتوافق مع نهج Enonical KG Adgedding. نقوم بإجراء تجارب مكثفة على العديد من مجموعات البيانات القياسية، تجهيز مجموعة متنوعة من النماذج (الإقصاء، بسيطة، والقلق) مع آلية DESTANGLING المقترحة. توضح النتائج التجريبية أن نهجنا المقترح يحسن الأداء بشكل كبير على المقاييس الرئيسية.
The design of expressive representations of entities and relations in a knowledge graph is an important endeavor. While many of the existing approaches have primarily focused on learning from relational patterns and structural information, the intrinsic complexity of KG entities has been more or less overlooked. More concretely, we hypothesize KG entities may be more complex than we think, i.e., an entity may wear many hats and relational triplets may form due to more than a single reason. To this end, this paper proposes to learn disentangled representations of KG entities - a new method that disentangles the inner latent properties of KG entities. Our disentangled process operates at the graph level and a neighborhood mechanism is leveraged to disentangle the hidden properties of each entity. This disentangled representation learning approach is model agnostic and compatible with canonical KG embedding approaches. We conduct extensive experiments on several benchmark datasets, equipping a variety of models (DistMult, SimplE, and QuatE) with our proposed disentangling mechanism. Experimental results demonstrate that our proposed approach substantially improves performance on key metrics.
References used
https://aclanthology.org/
Knowledge graphs (KGs) are widely used to store and access information about entities and their relationships. Given a query, the task of entity retrieval from a KG aims at presenting a ranked list of entities relevant to the query. Lately, an increa
Knowledge graph entity typing aims to infer entities' missing types in knowledge graphs which is an important but under-explored issue. This paper proposes a novel method for this task by utilizing entities' contextual information. Specifically, we d
With the recent surge in social applications relying on knowledge graphs, the need for techniques to ensure fairness in KG based methods is becoming increasingly evident. Previous works have demonstrated that KGs are prone to various social biases, a
Interactive machine reading comprehension (iMRC) is machine comprehension tasks where knowledge sources are partially observable. An agent must interact with an environment sequentially to gather necessary knowledge in order to answer a question. We
Knowledge Graphs (KGs) have become increasingly popular in the recent years. However, as knowledge constantly grows and changes, it is inevitable to extend existing KGs with entities that emerged or became relevant to the scope of the KG after its cr