Do you want to publish a course? Click here

Distantly Supervised Relation Extraction using Multi-Layer Revision Network and Confidence-based Multi-Instance Learning

استخراج العلاقات بشكل مسيير باستخدام شبكة مراجعة متعددة الطبقات والتعلم المتعدد للمثيل الثقة

365   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Distantly supervised relation extraction is widely used in the construction of knowledge bases due to its high efficiency. However, the automatically obtained instances are of low quality with numerous irrelevant words. In addition, the strong assumption of distant supervision leads to the existence of noisy sentences in the sentence bags. In this paper, we propose a novel Multi-Layer Revision Network (MLRN) which alleviates the effects of word-level noise by emphasizing inner-sentence correlations before extracting relevant information within sentences. Then, we devise a balanced and noise-resistant Confidence-based Multi-Instance Learning (CMIL) method to filter out noisy sentences as well as assign proper weights to relevant ones. Extensive experiments on two New York Times (NYT) datasets demonstrate that our approach achieves significant improvements over the baselines.



References used
https://aclanthology.org/
rate research

Read More

We propose a multi-task, probabilistic approach to facilitate distantly supervised relation extraction by bringing closer the representations of sentences that contain the same Knowledge Base pairs. To achieve this, we bias the latent space of senten ces via a Variational Autoencoder (VAE) that is trained jointly with a relation classifier. The latent code guides the pair representations and influences sentence reconstruction. Experimental results on two datasets created via distant supervision indicate that multi-task learning results in performance benefits. Additional exploration of employing Knowledge Base priors into theVAE reveals that the sentence space can be shifted towards that of the Knowledge Base, offering interpretability and further improving results.
Distantly supervised models are very popular for relation extraction since we can obtain a large amount of training data using the distant supervision method without human annotation. In distant supervision, a sentence is considered as a source of a tuple if the sentence contains both entities of the tuple. However, this condition is too permissive and does not guarantee the presence of relevant relation-specific information in the sentence. As such, distantly supervised training data contains much noise which adversely affects the performance of the models. In this paper, we propose a self-ensemble filtering mechanism to filter out the noisy samples during the training process. We evaluate our proposed framework on the New York Times dataset which is obtained via distant supervision. Our experiments with multiple state-of-the-art neural relation extraction models show that our proposed filtering mechanism improves the robustness of the models and increases their F1 scores.
In relation extraction, distant supervision is widely used to automatically label a large-scale training dataset by aligning a knowledge base with unstructured text. Most existing studies in this field have assumed there is a great deal of centralize d unstructured text. However, in practice, texts are usually distributed on different platforms and cannot be centralized due to privacy restrictions. Therefore, it is worthwhile to investigate distant supervision in the federated learning paradigm, which decouples the training of the model from the need for direct access to raw texts. However, overcoming label noise of distant supervision becomes more difficult in federated settings, because texts containing the same entity pair scatter around different platforms. In this paper, we propose a federated denoising framework to suppress label noise in federated settings. The key of this framework is a multiple instance learning based denoising method that is able to select reliable sentences via cross-platform collaboration. Various experiments on New York Times dataset and miRNA gene regulation relation dataset demonstrate the effectiveness of the proposed method.
To alleviate human efforts from obtaining large-scale annotations, Semi-Supervised Relation Extraction methods aim to leverage unlabeled data in addition to learning from limited samples. Existing self-training methods suffer from the gradual drift p roblem, where noisy pseudo labels on unlabeled data are incorporated during training. To alleviate the noise in pseudo labels, we propose a method called MetaSRE, where a Relation Label Generation Network generates accurate quality assessment on pseudo labels by (meta) learning from the successful and failed attempts on Relation Classification Network as an additional meta-objective. To reduce the influence of noisy pseudo labels, MetaSRE adopts a pseudo label selection and exploitation scheme which assesses pseudo label quality on unlabeled samples and only exploits high-quality pseudo labels in a self-training fashion to incrementally augment labeled samples for both robustness and accuracy. Experimental results on two public datasets demonstrate the effectiveness of the proposed approach.
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint manner. However, previous approaches do not well exploit the interactive relations among three subtasks and do not pertinently leverage the easily available document-level labeled domain/sentiment knowledge, which restricts their performances. To address these issues, we propose a novel Iterative Multi-Knowledge Transfer Network (IMKTN) for end-to-end ABSA. For one thing, through the interactive correlations between the ABSA subtasks, our IMKTN transfers the task-specific knowledge from any two of the three subtasks to another one at the token level by utilizing a well-designed routing algorithm, that is, any two of the three subtasks will help the third one. For another, our IMKTN pertinently transfers the document-level knowledge, i.e., domain-specific and sentiment-related knowledge, to the aspect-level subtasks to further enhance the corresponding performance. Experimental results on three benchmark datasets demonstrate the effectiveness and superiority of our approach.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا