Do you want to publish a course? Click here

Controllable Neural Dialogue Summarization with Personal Named Entity Planning

لخصي الحوار العصبي قابل للتحكم مع تخطيط الكيانات المسماة الشخصية

418   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper, we propose a controllable neural generation framework that can flexibly guide dialogue summarization with personal named entity planning. The conditional sequences are modulated to decide what types of information or what perspective to focus on when forming summaries to tackle the under-constrained problem in summarization tasks. This framework supports two types of use cases: (1) Comprehensive Perspective, which is a general-purpose case with no user-preference specified, considering summary points from all conversational interlocutors and all mentioned persons; (2) Focus Perspective, positioning the summary based on a user-specified personal named entity, which could be one of the interlocutors or one of the persons mentioned in the conversation. During training, we exploit occurrence planning of personal named entities and coreference information to improve temporal coherence and to minimize hallucination in neural generation. Experimental results show that our proposed framework generates fluent and factually consistent summaries under various planning controls using both objective metrics and human evaluations.



References used
https://aclanthology.org/
rate research

Read More

Pretraining-based neural network models have demonstrated state-of-the-art (SOTA) performances on natural language processing (NLP) tasks. The most frequently used sentence representation for neural-based NLP methods is a sequence of subwords that is different from the sentence representation of non-neural methods that are created using basic NLP technologies, such as part-of-speech (POS) tagging, named entity (NE) recognition, and parsing. Most neural-based NLP models receive only vectors encoded from a sequence of subwords obtained from an input text. However, basic NLP information, such as POS tags, NEs, parsing results, etc, cannot be obtained explicitly from only the large unlabeled text used in pretraining-based models. This paper explores use of NEs on two Japanese tasks; document classification and headline generation using Transformer-based models, to reveal the effectiveness of basic NLP information. The experimental results with eight basic NEs and approximately 200 extended NEs show that NEs improve accuracy although a large pretraining-based model trained using 70 GB text data was used.
Recent work on opinion summarization produces general summaries based on a set of input reviews and the popularity of opinions expressed in them. In this paper, we propose an approach that allows the generation of customized summaries based on aspect queries (e.g., describing the location and room of a hotel). Using a review corpus, we create a synthetic training dataset of (review, summary) pairs enriched with aspect controllers which are induced by a multi-instance learning model that predicts the aspects of a document at different levels of granularity. We fine-tune a pretrained model using our synthetic dataset and generate aspect-specific summaries by modifying the aspect controllers. Experiments on two benchmarks show that our model outperforms the previous state of the art and generates personalized summaries by controlling the number of aspects discussed in them.
Text Simplification improves the readability of sentences through several rewriting transformations, such as lexical paraphrasing, deletion, and splitting. Current simplification systems are predominantly sequence-to-sequence models that are trained end-to-end to perform all these operations simultaneously. However, such systems limit themselves to mostly deleting words and cannot easily adapt to the requirements of different target audiences. In this paper, we propose a novel hybrid approach that leverages linguistically-motivated rules for splitting and deletion, and couples them with a neural paraphrasing model to produce varied rewriting styles. We introduce a new data augmentation method to improve the paraphrasing capability of our model. Through automatic and manual evaluations, we show that our proposed model establishes a new state-of-the-art for the task, paraphrasing more often than the existing systems, and can control the degree of each simplification operation applied to the input texts.
Abstract We study controllable text summarization, which allows users to gain control on a particular attribute (e.g., length limit) of the generated summaries. In this work, we propose a novel training framework based on Constrained Markov Decision Process (CMDP), which conveniently includes a reward function along with a set of constraints, to facilitate better summarization control. The reward function encourages the generation to resemble the human-written reference, while the constraints are used to explicitly prevent the generated summaries from violating user-imposed requirements. Our framework can be applied to control important attributes of summarization, including length, covered entities, and abstractiveness, as we devise specific constraints for each of these aspects. Extensive experiments on popular benchmarks show that our CMDP framework helps generate informative summaries while complying with a given attribute's requirement.1
In this paper, we present NEREL, a Russian dataset for named entity recognition and relation extraction. NEREL is significantly larger than existing Russian datasets: to date it contains 56K annotated named entities and 39K annotated relations. Its i mportant difference from previous datasets is annotation of nested named entities, as well as relations within nested entities and at the discourse level. NEREL can facilitate development of novel models that can extract relations between nested named entities, as well as relations on both sentence and document levels. NEREL also contains the annotation of events involving named entities and their roles in the events. The NEREL collection is available via https://github.com/nerel-ds/NEREL.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا