Do you want to publish a course? Click here

Neural Re-rankers for Evidence Retrieval in the FEVEROUS Task

إعادة الراحة العصبية لاسترجاع الأدلة في المهمة الحمية

296   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Computational fact-checking has gained a lot of traction in the machine learning and natural language processing communities. A plethora of solutions have been developed, but methods which leverage both structured and unstructured information to detect misinformation are of particular relevance. In this paper, we tackle the FEVEROUS (Fact Extraction and VERification Over Unstructured and Structured information) challenge which consists of an open source baseline system together with a benchmark dataset containing 87,026 verified claims. We extend this baseline model by improving the evidence retrieval module yielding the best evidence F1 score among the competitors in the challenge leaderboard while obtaining an overall FEVEROUS score of 0.20 (5th best ranked system).



References used
https://aclanthology.org/
rate research

Read More

We develop a system for the FEVEROUS fact extraction and verification task that ranks an initial set of potential evidence and then pursues missing evidence in subsequent hops by trying to generate it, with a next hop prediction module'' whose output is matched against page elements in a predicted article. Seeking evidence with the next hop prediction module continues to improve FEVEROUS score for up to seven hops. Label classification is trained on possibly incomplete extracted evidence chains, utilizing hints that facilitate numerical comparison. The system achieves .281 FEVEROUS score and .658 label accuracy on the development set, and finishes in second place with .259 FEVEROUS score and .576 label accuracy on the test set.
Finding counterevidence to statements is key to many tasks, including counterargument generation. We build a system that, given a statement, retrieves counterevidence from diverse sources on the Web. At the core of this system is a natural language i nference (NLI) model that determines whether a candidate sentence is valid counterevidence or not. Most NLI models to date, however, lack proper reasoning abilities necessary to find counterevidence that involves complex inference. Thus, we present a knowledge-enhanced NLI model that aims to handle causality- and example-based inference by incorporating knowledge graphs. Our NLI model outperforms baselines for NLI tasks, especially for instances that require the targeted inference. In addition, this NLI model further improves the counterevidence retrieval system, notably finding complex counterevidence better.
Claim verification is challenging because it requires first to find textual evidence and then apply claim-evidence entailment to verify a claim. Previous works evaluate the entailment step based on the retrieved evidence, whereas we hypothesize that the entailment prediction can provide useful signals for evidence retrieval, in the sense that if a sentence supports or refutes a claim, the sentence must be relevant. We propose a novel model that uses the entailment score to express the relevancy. Our experiments verify that leveraging entailment prediction improves ranking multiple pieces of evidence.
Automated fact-checking on a large-scale is a challenging task that has not been studied systematically until recently. Large noisy document collections like the web or news articles make the task more difficult. We describe a three-stage automated f act-checking system, named Quin+, using evidence retrieval and selection methods. We demonstrate that using dense passage representations leads to much higher evidence recall in a noisy setting. We also propose two sentence selection approaches, an embedding-based selection using a dense retrieval model, and a sequence labeling approach for context-aware selection. Quin+ is able to verify open-domain claims using results from web search engines.
In various natural language processing tasks, passage retrieval and passage re-ranking are two key procedures in finding and ranking relevant information. Since both the two procedures contribute to the final performance, it is important to jointly o ptimize them in order to achieve mutual improvement. In this paper, we propose a novel joint training approach for dense passage retrieval and passage reranking. A major contribution is that we introduce the dynamic listwise distillation, where we design a unified listwise training approach for both the retriever and the re-ranker. During the dynamic distillation, the retriever and the re-ranker can be adaptively improved according to each other's relevance information. We also propose a hybrid data augmentation strategy to construct diverse training instances for listwise training approach. Extensive experiments show the effectiveness of our approach on both MSMARCO and Natural Questions datasets. Our code is available at https://github.com/PaddlePaddle/RocketQA.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا