يهدف تصنيف المعنويات على مستوى الجانب (ALSC) إلى تحديد قطبية المعنويات من جانب محدد في جملة. ESSC عبارة عن إعداد عملي في تحليل المعنويات المستندة إلى جانب الجسيم بسبب عدم وجود مصطلح الرأي اللازم، لكنه فشل في تفسير سبب اشتقاق قطبية المعنويات للجانب. لمعالجة هذه المشكلة، تعمل الأعمال الحديثة من تشفير المحولات التي تم تدريبها مسبقا على ELSC لاستخراج شجرة التبعية التي تركز على جانب جانب الجوانب التي يمكن أن تحدد كلمات الرأي. ومع ذلك، فإن كلمات الرأي المستحثة توفر فقط جديلة بديهية أقل بكثير من الترجمة الترجمة الشاملة على مستوى الإنسان. بالإضافة إلى ذلك، يميل التشفير المدرب مسبقا إلى استيعاب المشاعر الجوهرية في الجانب، مما تسبب في تحيز المعنويات وبالتالي يؤثر على أداء النموذج. في هذه الورقة، نقترح إطارا لتعليم تمثيل جانبي لمكافحة التحيز. يزيل أولا تحيز المعنويات في الجانب التضمين من خلال التعلم الخصم ضد المعنويات السابقة للجوانب. بعد ذلك، تقوم بمحاطة مرشحي الرأي المقطرين بالجانب من خلال نمذجة التبعية المستندة إلى SPAN لتسليط الضوء على شروط الرأي القابلة للتفسير. إن طريقتنا تحقق أداء جديد لحساب الفن في خمسة معايير، مع إمكانية استخراج الرأي غير المزعوم.
Aspect-level sentiment classification (ALSC) aims at identifying the sentiment polarity of a specified aspect in a sentence. ALSC is a practical setting in aspect-based sentiment analysis due to no opinion term labeling needed, but it fails to interpret why a sentiment polarity is derived for the aspect. To address this problem, recent works fine-tune pre-trained Transformer encoders for ALSC to extract an aspect-centric dependency tree that can locate the opinion words. However, the induced opinion words only provide an intuitive cue far below human-level interpretability. Besides, the pre-trained encoder tends to internalize an aspect's intrinsic sentiment, causing sentiment bias and thus affecting model performance. In this paper, we propose a span-based anti-bias aspect representation learning framework. It first eliminates the sentiment bias in the aspect embedding by adversarial learning against aspects' prior sentiment. Then, it aligns the distilled opinion candidates with the aspect by span-based dependency modeling to highlight the interpretable opinion terms. Our method achieves new state-of-the-art performance on five benchmarks, with the capability of unsupervised opinion extraction.
References used
https://aclanthology.org/
Recent work on aspect-level sentiment classification has employed Graph Convolutional Networks (GCN) over dependency trees to learn interactions between aspect terms and opinion words. In some cases, the corresponding opinion words for an aspect term
Recent work on aspect-level sentiment classification has demonstrated the efficacy of incorporating syntactic structures such as dependency trees with graph neural networks (GNN), but these approaches are usually vulnerable to parsing errors. To bett
Aspect-based Sentiment Analysis (ABSA), aiming at predicting the polarities for aspects, is a fine-grained task in the field of sentiment analysis. Previous work showed syntactic information, e.g. dependency trees, can effectively improve the ABSA pe
The streaming service platform such as YouTube provides a discussion function for audiences worldwide to share comments. YouTubers who upload videos to the YouTube platform want to track the performance of these uploaded videos. However, the present
Aspect-based sentiment analysis (ABSA) typically focuses on extracting aspects and predicting their sentiments on individual sentences such as customer reviews. Recently, another kind of opinion sharing platform, namely question answering (QA) forum,