الحوار المرئي هو مهمة الإجابة على سلسلة من الأسئلة التي تأسست في صورة باستخدام سجل الحوار السابق كسياق. في هذه الورقة، ندرس كيفية معالجة تحديين أساسيين لهذه المهمة: (1) التفكير في الهياكل الدلالية الأساسية بين جولات الحوار و (2) تحديد العديد من الإجابات المناسبة على السؤال المحدد. لمعالجة هذه التحديات، نقترح طريقة لتعليم الرسومات Sparse (SGL) لصياغة مربع حوار مرئي كهزم تعلم هيكل الرسم البياني. ينتشر SGL هياكل الحوار متناثرة بطبيعته من خلال دمج حواف ثنائية وتسهيل وظيفة فقدان هيكلية جديدة. بعد ذلك، نقدم طريقة نقل المعرفة (KT) التي تستخرج تنبؤات الإجابة من نموذج المعلم وتستخدمها باسم ملصقات زائفة. نقترح KT لعلاج أوجه القصور في ملصقات فردية واحدة للحقيقة، والتي تحد بشدة من قدرة نموذج للحصول على إجابات معقولة متعددة. نتيجة لذلك، يحسن نموذجنا المقترح بشكل كبير القدرة على التفكير مقارنة بطرق خط الأساس وتتفوق من الأساليب الحديثة على مجموعة بيانات V1.0 Versdial. يتوفر شفرة المصدر في https://github.com/gicheonkang/sglkt-visdial.
Visual dialog is a task of answering a sequence of questions grounded in an image using the previous dialog history as context. In this paper, we study how to address two fundamental challenges for this task: (1) reasoning over underlying semantic structures among dialog rounds and (2) identifying several appropriate answers to the given question. To address these challenges, we propose a Sparse Graph Learning (SGL) method to formulate visual dialog as a graph structure learning task. SGL infers inherently sparse dialog structures by incorporating binary and score edges and leveraging a new structural loss function. Next, we introduce a Knowledge Transfer (KT) method that extracts the answer predictions from the teacher model and uses them as pseudo labels. We propose KT to remedy the shortcomings of single ground-truth labels, which severely limit the ability of a model to obtain multiple reasonable answers. As a result, our proposed model significantly improves reasoning capability compared to baseline methods and outperforms the state-of-the-art approaches on the VisDial v1.0 dataset. The source code is available at https://github.com/gicheonkang/SGLKT-VisDial.
References used
https://aclanthology.org/
Numeracy plays a key role in natural language understanding. However, existing NLP approaches, not only traditional word2vec approach or contextualized transformer-based language models, fail to learn numeracy. As the result, the performance of these
Recently Graph Neural Network (GNN) has been used as a promising tool in multi-hop question answering task. However, the unnecessary updations and simple edge constructions prevent an accurate answer span extraction in a more direct and interpretable
Growing interests have been attracted in Conversational Recommender Systems (CRS), which explore user preference through conversational interactions in order to make appropriate recommendation. However, there is still a lack of ability in existing CR
Considering the importance of building a good Visual Dialog (VD) Questioner, many researchers study the topic under a Q-Bot-A-Bot image-guessing game setting, where the Questioner needs to raise a series of questions to collect information of an undi
Dialogue State Tracking is central to multi-domain task-oriented dialogue systems, responsible for extracting information from user utterances. We present a novel hybrid architecture that augments GPT-2 with representations derived from Graph Attenti