تصف هذه الورقة أساليبنا المقدمة لمهمة Germeval 2021 المشتركة بشأن تحديد تعليقات سمية ومشاركة في الحقائق في نصوص وسائل التواصل الاجتماعي (RISCH et al.، 2021).نستكشف استراتيجيات بسيطة للجيل شبه التلقائي من الأنظمة القائمة على القواعد ذات الدقة عالية واستدعاء منخفضة، واستخدامها لتحقيق تحسينات إجمالية طفيفة على تصنيف قياسي مقرها بيرت.
This paper describes our methods submitted for the GermEval 2021 shared task on identifying toxic, engaging and fact-claiming comments in social media texts (Risch et al., 2021). We explore simple strategies for semi-automatic generation of rule-based systems with high precision and low recall, and use them to achieve slight overall improvements over a standard BERT-based classifier.
References used
https://aclanthology.org/
This paper addresses the identification of toxic, engaging, and fact-claiming comments on social media. We used the dataset made available by the organizers of the GermEval2021 shared task containing over 3,000 manually annotated Facebook comments in
In this paper we present UPAppliedCL's contribution to the GermEval 2021 Shared Task. In particular, we participated in Subtasks 2 (Engaging Comment Classification) and 3 (Fact-Claiming Comment Classification). While acceptable results can be obtaine
In this paper, we report on our approach to addressing the GermEval 2021 Shared Task on the Identification of Toxic, Engaging, and Fact-Claiming Comments for the German language. We submitted three runs for each subtask based on ensembles of three mo
We present the GermEval 2021 shared task on the identification of toxic, engaging, and fact-claiming comments. This shared task comprises three binary classification subtasks with the goal to identify: toxic comments, engaging comments, and comments
The availability of language representations learned by large pretrained neural network models (such as BERT and ELECTRA) has led to improvements in many downstream Natural Language Processing tasks in recent years. Pretrained models usually differ i