Do you want to publish a course? Click here

Unsupervised Approach to Multilingual User Comments Summarization

نهج غير منشأة لتلخيص تعليقات المستخدم المتعدد اللغات

205   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

User commenting is a valuable feature of many news outlets, enabling them a contact with readers and enabling readers to express their opinion, provide different viewpoints, and even complementary information. Yet, large volumes of user comments are hard to filter, let alone read and extract relevant information. The research on the summarization of user comments is still in its infancy, and human-created summarization datasets are scarce, especially for less-resourced languages. To address this issue, we propose an unsupervised approach to user comments summarization, which uses a modern multilingual representation of sentences together with standard extractive summarization techniques. Our comparison of different sentence representation approaches coupled with different summarization approaches shows that the most successful combinations are the same in news and comment summarization. The empirical results and presented visualisation show usefulness of the proposed methodology for several languages.



References used
https://aclanthology.org/
rate research

Read More

In this paper, we address unsupervised chunking as a new task of syntactic structure induction, which is helpful for understanding the linguistic structures of human languages as well as processing low-resource languages. We propose a knowledge-trans fer approach that heuristically induces chunk labels from state-of-the-art unsupervised parsing models; a hierarchical recurrent neural network (HRNN) learns from such induced chunk labels to smooth out the noise of the heuristics. Experiments show that our approach largely bridges the gap between supervised and unsupervised chunking.
The task of converting a nonstandard text to a standard and readable text is known as lexical normalization. Almost all the Natural Language Processing (NLP) applications require the text data in normalized form to build quality task-specific models. Hence, lexical normalization has been proven to improve the performance of numerous natural language processing tasks on social media. This study aims to solve the problem of Lexical Normalization by formulating the Lexical Normalization task as a Sequence Labeling problem. This paper proposes a sequence labeling approach to solve the problem of Lexical Normalization in combination with the word-alignment technique. The goal is to use a single model to normalize text in various languages namely Croatian, Danish, Dutch, English, Indonesian-English, German, Italian, Serbian, Slovenian, Spanish, Turkish, and Turkish-German. This is a shared task in 2021 The 7th Workshop on Noisy User-generated Text (W-NUT)'' in which the participants are expected to create a system/model that performs lexical normalization, which is the translation of non-canonical texts into their canonical equivalents, comprising data from over 12 languages. The proposed single multilingual model achieves an overall ERR score of 43.75 on intrinsic evaluation and an overall Labeled Attachment Score (LAS) score of 63.12 on extrinsic evaluation. Further, the proposed method achieves the highest Error Reduction Rate (ERR) score of 61.33 among the participants in the shared task. This study highlights the effects of using additional training data to get better results as well as using a pre-trained Language model trained on multiple languages rather than only on one language.
Unsupervised relation extraction works by clustering entity pairs that have the same relations in the text. Some existing variational autoencoder (VAE)-based approaches train the relation extraction model as an encoder that generates relation classif ications. A decoder is trained along with the encoder to reconstruct the encoder input based on the encoder-generated relation classifications. These classifications are a latent variable so they are required to follow a pre-defined prior distribution which results in unstable training. We propose a VAE-based unsupervised relation extraction technique that overcomes this limitation by using the classifications as an intermediate variable instead of a latent variable. Specifically, classifications are conditioned on sentence input, while the latent variable is conditioned on both the classifications and the sentence input. This allows our model to connect the decoder with the encoder without putting restrictions on the classification distribution; which improves training stability. Our approach is evaluated on the NYT dataset and outperforms state-of-the-art methods.
Toxic comments contain forms of non-acceptable language targeted towards groups or individuals. These types of comments become a serious concern for government organizations, online communities, and social media platforms. Although there are some app roaches to handle non-acceptable language, most of them focus on supervised learning and the English language. In this paper, we deal with toxic comment detection as a semi-supervised strategy over a heterogeneous graph. We evaluate the approach on a toxic dataset of the Portuguese language, outperforming several graph-based methods and achieving competitive results compared to transformer architectures.
Language as a significant part of communication should be inclusive of equality and diversity. The internet user's language has a huge influence on peer users all over the world. People express their views through language on virtual platforms like F acebook, Twitter, YouTube etc. People admire the success of others, pray for their well-being, and encourage on their failure. Such inspirational comments are hope speech comments. At the same time, a group of users promotes discrimination based on gender, racial, sexual orientation, persons with disability, and other minorities. The current paper aims to identify hope speech comments which are very important to move on in life. Various machine learning and deep learning based models (such as support vector machine, logistics regression, convolutional neural network, recurrent neural network) are employed to identify the hope speech in the given YouTube comments. The YouTube comments are available in English, Tamil and Malayalam languages and are part of the task EACL-2021:Hope Speech Detection for Equality, Diversity and Inclusion''.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا