نعتمد وتقييم وتحسين خطاب خط أنابيب طبيعي من خطوتين (NLU) على خطاب (NLU) الذي يرصد تدريجيا على تباين إيداع اللغة الطبيعية غير المقيدة والخرائط إلى سلوكيات الروبوت القابلة للتنفيذ.يقوم خط الأنابيب أولا بإضافة تمثيل تمثيل المعنى التجريدي (AMR) لالتقاط المحتوى المقترح للكلام بالكلام، وتحول ثانيا إلى هذا الحوار-عمرو، "مما يؤدي إلى زيادة AMR القياسية مع معلومات عن التوتر والجانب والعقار والكلمات.يتم تقييم العديد من الأساليب البديلة وتدريب مجموعات البيانات التدريبية لكلا الخطوتين والمكونات المقابلة لخط الأنابيب، بعضها يتفوق على الأصل الأصلي.نقوم بتوسيع مخطط التعليق التوضيحي للحوار - AMR لتغطية مجال التعليمات التعاوني المختلفة وتقييم على كلا النطاقات.مع القليل جدا من البيانات التدريبية، نحقق أداء واعد في المجال الجديد، مما يدل على قابلية هذا النهج.
We adopt, evaluate, and improve upon a two-step natural language understanding (NLU) pipeline that incrementally tames the variation of unconstrained natural language input and maps to executable robot behaviors. The pipeline first leverages Abstract Meaning Representation (AMR) parsing to capture the propositional content of the utterance, and second converts this into Dialogue-AMR,'' which augments standard AMR with information on tense, aspect, and speech acts. Several alternative approaches and training datasets are evaluated for both steps and corresponding components of the pipeline, some of which outperform the original. We extend the Dialogue-AMR annotation schema to cover a different collaborative instruction domain and evaluate on both domains. With very little training data, we achieve promising performance in the new domain, demonstrating the scalability of this approach.
References used
https://aclanthology.org/
Fanfiction presents an opportunity as a data source for research in NLP, education, and social science. However, answering specific research questions with this data is difficult, since fanfiction contains more diverse writing styles than formal fict
We present EventPlus, a temporal event understanding pipeline that integrates various state-of-the-art event understanding components including event trigger and type detection, event argument detection, event duration and temporal relation extractio
In cross-lingual Abstract Meaning Representation (AMR) parsing, researchers develop models that project sentences from various languages onto their AMRs to capture their essential semantic structures: given a sentence in any language, we aim to captu
Code-mixing is a phenomenon of mixing words and phrases from two or more languages in a single utterance of speech and text. Due to the high linguistic diversity, code-mixing presents several challenges in evaluating standard natural language generat
Split-and-rephrase is a challenging task that promotes the transformation of a given complex input sentence into multiple shorter sentences retaining equivalent meaning. This rewriting approach conceptualizes that shorter sentences benefit human read