التنبؤ بالعلامة المستنيرة عن مجموعة من النصوص وقواعد المعرفة المنوية، يجمع بين إكمال الرسوم البيانية المعرفة مع استخراج العلاقات، هي مهمة درس صغيرة نسبيا.النظام الذي يمكن أن يؤدي هذه المهمة له القدرة على تمديد مجموعة تعسفية من جداول قاعدة البيانات العلائقية مع المعلومات المستخرجة من Corpus Document.يتناول OpenKi [1] هذه المهمة من خلال استخراج الكيانات المسماة ويستند عبر أدوات Openie، ثم تعلم تضمين العلاقات من الرسم البياني لعلاقة الكيانات الناتجة عن التنبؤ بالعلاقة، مما يتفوق على النهج السابقة.نقدم امتدادا من Openki الذي يشتمل على مذكرات من التمثيلات القائمة على النصوص للكيانات والعلاقات.نوضح أن هذا يؤدي إلى زيادة كبيرة في الأداء على نظام دون هذه المعلومات.
Relation prediction informed from a combination of text corpora and curated knowledge bases, combining knowledge graph completion with relation extraction, is a relatively little studied task. A system that can perform this task has the ability to extend an arbitrary set of relational database tables with information extracted from a document corpus. OpenKi[1] addresses this task through extraction of named entities and predicates via OpenIE tools then learning relation embeddings from the resulting entity-relation graph for relation prediction, outperforming previous approaches. We present an extension of OpenKi that incorporates embeddings of text-based representations of the entities and the relations. We demonstrate that this results in a substantial performance increase over a system without this information.
References used
https://aclanthology.org/
Neural encoders of biomedical names are typically considered robust if representations can be effectively exploited for various downstream NLP tasks. To achieve this, encoders need to model domain-specific biomedical semantics while rivaling the univ
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resour
Recent successes in deep generative modeling have led to significant advances in natural language generation (NLG). Incorporating entities into neural generation models has demonstrated great improvements by assisting to infer the summary topic and t
While much research has been done in text-to-image synthesis, little work has been done to explore the usage of linguistic structure of the input text. Such information is even more important for story visualization since its inputs have an explicit
Classical information retrieval systems such as BM25 rely on exact lexical match and can carry out search efficiently with inverted list index. Recent neural IR models shifts towards soft matching all query document terms, but they lose the computati