Do you want to publish a course? Click here

Integrating Lexical Information into Entity Neighbourhood Representations for Relation Prediction

دمج المعلومات المعجمية في تمثيلات حي الكيان التنبؤ بالعلاقة

273   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Relation prediction informed from a combination of text corpora and curated knowledge bases, combining knowledge graph completion with relation extraction, is a relatively little studied task. A system that can perform this task has the ability to extend an arbitrary set of relational database tables with information extracted from a document corpus. OpenKi[1] addresses this task through extraction of named entities and predicates via OpenIE tools then learning relation embeddings from the resulting entity-relation graph for relation prediction, outperforming previous approaches. We present an extension of OpenKi that incorporates embeddings of text-based representations of the entities and the relations. We demonstrate that this results in a substantial performance increase over a system without this information.

References used
https://aclanthology.org/
rate research

Read More

Neural encoders of biomedical names are typically considered robust if representations can be effectively exploited for various downstream NLP tasks. To achieve this, encoders need to model domain-specific biomedical semantics while rivaling the univ ersal applicability of pretrained self-supervised representations. Previous work on robust representations has focused on learning low-level distinctions between names of fine-grained biomedical concepts. These fine-grained concepts can also be clustered together to reflect higher-level, more general semantic distinctions, such as grouping the names nettle sting and tick-borne fever together under the description puncture wound of skin. It has not yet been empirically confirmed that training biomedical name encoders on fine-grained distinctions automatically leads to bottom-up encoding of such higher-level semantics. In this paper, we show that this bottom-up effect exists, but that it is still relatively limited. As a solution, we propose a scalable multi-task training regime for biomedical name encoders which can also learn robust representations using only higher-level semantic classes. These representations can generalise both bottom-up as well as top-down among various semantic hierarchies. Moreover, we show how they can be used out-of-the-box for improved unsupervised detection of hypernyms, while retaining robust performance on various semantic relatedness benchmarks.
Recent information extraction approaches have relied on training deep neural models. However, such models can easily overfit noisy labels and suffer from performance degradation. While it is very costly to filter noisy labels in large learning resour ces, recent studies show that such labels take more training steps to be memorized and are more frequently forgotten than clean labels, therefore are identifiable in training. Motivated by such properties, we propose a simple co-regularization framework for entity-centric information extraction, which consists of several neural models with identical structures but different parameter initialization. These models are jointly optimized with the task-specific losses and are regularized to generate similar predictions based on an agreement loss, which prevents overfitting on noisy labels. Extensive experiments on two widely used but noisy benchmarks for information extraction, TACRED and CoNLL03, demonstrate the effectiveness of our framework. We release our code to the community for future research.
Recent successes in deep generative modeling have led to significant advances in natural language generation (NLG). Incorporating entities into neural generation models has demonstrated great improvements by assisting to infer the summary topic and t o generate coherent content. To enhance the role of entity in NLG, in this paper, we aim to model the entity type in the decoding phase to generate contextual words accurately. We develop a novel NLG model to produce a target sequence based on a given list of entities. Our model has a multi-step decoder that injects the entity types into the process of entity mention generation. Experiments on two public news datasets demonstrate type injection performs better than existing type embedding concatenation baselines.
While much research has been done in text-to-image synthesis, little work has been done to explore the usage of linguistic structure of the input text. Such information is even more important for story visualization since its inputs have an explicit narrative structure that needs to be translated into an image sequence (or visual story). Prior work in this domain has shown that there is ample room for improvement in the generated image sequence in terms of visual quality, consistency and relevance. In this paper, we first explore the use of constituency parse trees using a Transformer-based recurrent architecture for encoding structured input. Second, we augment the structured input with commonsense information and study the impact of this external knowledge on the generation of visual story. Third, we also incorporate visual structure via bounding boxes and dense captioning to provide feedback about the characters/objects in generated images within a dual learning setup. We show that off-the-shelf dense-captioning models trained on Visual Genome can improve the spatial structure of images from a different target domain without needing fine-tuning. We train the model end-to-end using intra-story contrastive loss (between words and image sub-regions) and show significant improvements in visual quality. Finally, we provide an analysis of the linguistic and visuo-spatial information.
Classical information retrieval systems such as BM25 rely on exact lexical match and can carry out search efficiently with inverted list index. Recent neural IR models shifts towards soft matching all query document terms, but they lose the computati on efficiency of exact match systems. This paper presents COIL, a contextualized exact match retrieval architecture, where scoring is based on overlapping query document tokens' contextualized representations. The new architecture stores contextualized token representations in inverted lists, bringing together the efficiency of exact match and the representation power of deep language models. Our experimental results show COIL outperforms classical lexical retrievers and state-of-the-art deep LM retrievers with similar or smaller latency.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا