إن الاستدلال اللغوي الطبيعي هو طريقة لإيجاد الاستدلالات في نصوص اللغة.فهم معنى الجملة واستدلالها أمر ضروري في العديد من تطبيقات معالجة اللغة.في هذا السياق، نعتبر مشكلة الاستدلال بلغة Dravidian، مالايالام.تدرب شبكات سيامي أزواج فرضية النص مع Adgeddings Word و Argeddings اللازم، ويتم تقييم النتائج مقابل مقاييس التصنيف للتصنيف الثنائي في دروس الاستقصاء والتناقض.توفر XLM-R AMBEBINGS القائم على الهندسة المعمارية السيامية باستخدام الوحدات المتكررة الدائرية وشبكات الذاكرة القصيرة الأجل الثنائية لفترة طويلة نتائج واعدة لمشكلة التصنيف هذه.
Natural language inference is a method of finding inferences in language texts. Understanding the meaning of a sentence and its inference is essential in many language processing applications. In this context, we consider the inference problem for a Dravidian language, Malayalam. Siamese networks train the text hypothesis pairs with word embeddings and language agnostic embeddings, and the results are evaluated against classification metrics for binary classification into entailment and contradiction classes. XLM-R embeddings based Siamese architecture using gated recurrent units and bidirectional long short term memory networks provide promising results for this classification problem.
References used
https://aclanthology.org/
Due to the development of deep learning, the natural language processing tasks have made great progresses by leveraging the bidirectional encoder representations from Transformers (BERT). The goal of information retrieval is to search the most releva
We probe pre-trained transformer language models for bridging inference. We first investigate individual attention heads in BERT and observe that attention heads at higher layers prominently focus on bridging relations in-comparison with the lower an
Combining a pretrained language model (PLM) with textual patterns has been shown to help in both zero- and few-shot settings. For zero-shot performance, it makes sense to design patterns that closely resemble the text seen during self-supervised pret
Recently, impressive performance on various natural language understanding tasks has been achieved by explicitly incorporating syntax and semantic information into pre-trained models, such as BERT and RoBERTa. However, this approach depends on proble
This paper introduces a new video-and-language dataset with human actions for multimodal logical inference, which focuses on intentional and aspectual expressions that describe dynamic human actions. The dataset consists of 200 videos, 5,554 action l