نظرا لتطوير التعلم العميق، حققت مهام معالجة اللغة الطبيعية تقدم كبيرا من خلال الاستفادة من تمثيل التشفير الثنائي الاتجاه من المحولات (بيرت). الهدف من استرجاع المعلومات هو البحث في أكثر النتائج ذات الصلة لاستعلام المستخدم من مجموعة كبيرة من المستندات. على الرغم من أن نماذج استرجاع مقرها بيرت أظهرت نتائج ممتازة في العديد من الدراسات، إلا أن هذه النماذج تعاني عادة من الحاجة إلى كميات كبيرة من الحسابات و / أو مسافات تخزين إضافية. في ضوء العيوب، يتم اقتراح نموذج استرجاع منظم في سيامي في بيرت (Bess) في هذه الورقة. لا يرث BESS فقط مزايا نماذج اللغة المدربة مسبقا، ولكن يمكن أيضا إنشاء معلومات إضافية لتعويض الاستعلام الأصلي تلقائيا. علاوة على ذلك، يتم تقديم استراتيجية تعليم التعزيز لجعل النموذج أكثر قوة. وفقا لذلك، نقيم BESS على ثلاثة كوربورا عامة المتاحة، وتتضح النتائج التجريبية كفاءة نموذج الاسترجاع المقترح.
Due to the development of deep learning, the natural language processing tasks have made great progresses by leveraging the bidirectional encoder representations from Transformers (BERT). The goal of information retrieval is to search the most relevant results for the user's query from a large set of documents. Although BERT-based retrieval models have shown excellent results in many studies, these models usually suffer from the need for large amounts of computations and/or additional storage spaces. In view of the flaws, a BERT-based Siamese-structured retrieval model (BESS) is proposed in this paper. BESS not only inherits the merits of pre-trained language models, but also can generate extra information to compensate the original query automatically. Besides, the reinforcement learning strategy is introduced to make the model more robust. Accordingly, we evaluate BESS on three public-available corpora, and the experimental results demonstrate the efficiency of the proposed retrieval model.
References used
https://aclanthology.org/
Recently, impressive performance on various natural language understanding tasks has been achieved by explicitly incorporating syntax and semantic information into pre-trained models, such as BERT and RoBERTa. However, this approach depends on proble
Dialect and standard language identification are crucial tasks for many Arabic natural language processing applications. In this paper, we present our deep learning-based system, submitted to the second NADI shared task for country-level and province
Passage retrieval and ranking is a key task in open-domain question answering and information retrieval. Current effective approaches mostly rely on pre-trained deep language model-based retrievers and rankers. These methods have been shown to effect
Natural language inference is a method of finding inferences in language texts. Understanding the meaning of a sentence and its inference is essential in many language processing applications. In this context, we consider the inference problem for a
The Shared Task on Hateful Memes is a challenge that aims at the detection of hateful content in memes by inviting the implementation of systems that understand memes, potentially by combining image and textual information. The challenge consists of