Do you want to publish a course? Click here

Fine-tuning Neural Language Models for Multidimensional Opinion Mining of English-Maltese Social Data

نماذج اللغة العصبية النمذجة عن الرأي المتعدد الأبعاد التعدين البيانات الاجتماعية الإنجليزية - المالطية

381   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents multidimensional Social Opinion Mining on user-generated content gathered from newswires and social networking services in three different languages: English ---a high-resourced language, Maltese ---a low-resourced language, and Maltese-English ---a code-switched language. Multiple fine-tuned neural classification language models which cater for the i) English, Maltese and Maltese-English languages as well as ii) five different social opinion dimensions, namely subjectivity, sentiment polarity, emotion, irony and sarcasm, are presented. Results per classification model for each social opinion dimension are discussed.



References used
https://aclanthology.org/
rate research

Read More

In this tutorial, we will show where we are and where we will be to those researchers interested in this topic. We divide this tutorial into three parts, including coarse-grained financial opinion mining, fine-grained financial opinion mining, and po ssible research directions. This tutorial starts by introducing the components in a financial opinion proposed in our research agenda and summarizes their related studies. We also highlight the task of mining customers' opinions toward financial services in the FinTech industry, and compare them with usual opinions. Several potential research questions will be addressed. We hope the audiences of this tutorial will gain an overview of financial opinion mining and figure out their research directions.
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i n pre-training could further improve the performance of PrLMs. However, given that span-level clues are introduced and fixed in pre-training, previous methods are time-consuming and lack of flexibility. To alleviate the inconvenience, this paper presents a novel span fine-tuning method for PrLMs, which facilitates the span setting to be adaptively determined by specific downstream tasks during the fine-tuning phase. In detail, any sentences processed by the PrLM will be segmented into multiple spans according to a pre-sampled dictionary. Then the segmentation information will be sent through a hierarchical CNN module together with the representation outputs of the PrLM and ultimately generate a span-enhanced representation. Experiments on GLUE benchmark show that the proposed span fine-tuning method significantly enhances the PrLM, and at the same time, offer more flexibility in an efficient way.
As NLP models are increasingly deployed in socially situated settings such as online abusive content detection, it is crucial to ensure that these models are robust. One way of improving model robustness is to generate counterfactually augmented data (CAD) for training models that can better learn to distinguish between core features and data artifacts. While models trained on this type of data have shown promising out-of-domain generalizability, it is still unclear what the sources of such improvements are. We investigate the benefits of CAD for social NLP models by focusing on three social computing constructs --- sentiment, sexism, and hate speech. Assessing the performance of models trained with and without CAD across different types of datasets, we find that while models trained on CAD show lower in-domain performance, they generalize better out-of-domain. We unpack this apparent discrepancy using machine explanations and find that CAD reduces model reliance on spurious features. Leveraging a novel typology of CAD to analyze their relationship with model performance, we find that CAD which acts on the construct directly or a diverse set of CAD leads to higher performance.
High-performance neural language models have obtained state-of-the-art results on a wide range of Natural Language Processing (NLP) tasks. However, results for common benchmark datasets often do not reflect model reliability and robustness when appli ed to noisy, real-world data. In this study, we design and implement various types of character-level and word-level perturbation methods to simulate realistic scenarios in which input texts may be slightly noisy or different from the data distribution on which NLP systems were trained. Conducting comprehensive experiments on different NLP tasks, we investigate the ability of high-performance language models such as BERT, XLNet, RoBERTa, and ELMo in handling different types of input perturbations. The results suggest that language models are sensitive to input perturbations and their performance can decrease even when small changes are introduced. We highlight that models need to be further improved and that current benchmarks are not reflecting model robustness well. We argue that evaluations on perturbed inputs should routinely complement widely-used benchmarks in order to yield a more realistic understanding of NLP systems' robustness.
In this paper we compare the performance of three models: SGNS (skip-gram negative sampling) and augmented versions of SVD (singular value decomposition) and PPMI (Positive Pointwise Mutual Information) on a word similarity task. We particularly focu s on the role of hyperparameter tuning for Hindi based on recommendations made in previous work (on English). Our results show that there are language specific preferences for these hyperparameters. We extend the best settings for Hindi to a set of related languages: Punjabi, Gujarati and Marathi with favourable results. We also find that a suitably tuned SVD model outperforms SGNS for most of our languages and is also more robust in a low-resource setting.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا