تعرض هذه الورقة تعدد الأبعاد التعدين على المحتوى الذي تم إنشاؤه من قبل المستخدم الذي تم جمعه من Newshires وخدمات الشبكات الاجتماعية بثلاث لغات مختلفة: اللغة الإنجليزية --- لغة عالية الموارد، المالطية --- لغة منخفضة الموارد، والالططية-الإنجليزية -- لغة تبديل الكود.العديد من طرازات لغة التصنيف العصبي المتعددة التي تلبي اللغات التي تلبيها اللغات الإنجليزية واللطاطية واللطاطية والإنجليزية وكذلك الثانية) خمسة أبعاد الرأي الاجتماعي المختلفة، وهي الذاتية، قطبية المعنويات، العاطفة والسخرية والسخرية، مقدمة.تتم مناقشة النتائج لكل نموذج تصنيف لكل البعد الاجتماعي.
This paper presents multidimensional Social Opinion Mining on user-generated content gathered from newswires and social networking services in three different languages: English ---a high-resourced language, Maltese ---a low-resourced language, and Maltese-English ---a code-switched language. Multiple fine-tuned neural classification language models which cater for the i) English, Maltese and Maltese-English languages as well as ii) five different social opinion dimensions, namely subjectivity, sentiment polarity, emotion, irony and sarcasm, are presented. Results per classification model for each social opinion dimension are discussed.
References used
https://aclanthology.org/
In this tutorial, we will show where we are and where we will be to those researchers interested in this topic. We divide this tutorial into three parts, including coarse-grained financial opinion mining, fine-grained financial opinion mining, and po
Pre-trained language models (PrLM) have to carefully manage input units when training on a very large text with a vocabulary consisting of millions of words. Previous works have shown that incorporating span-level information over consecutive words i
As NLP models are increasingly deployed in socially situated settings such as online abusive content detection, it is crucial to ensure that these models are robust. One way of improving model robustness is to generate counterfactually augmented data
High-performance neural language models have obtained state-of-the-art results on a wide range of Natural Language Processing (NLP) tasks. However, results for common benchmark datasets often do not reflect model reliability and robustness when appli
In this paper we compare the performance of three models: SGNS (skip-gram negative sampling) and augmented versions of SVD (singular value decomposition) and PPMI (Positive Pointwise Mutual Information) on a word similarity task. We particularly focu