Do you want to publish a course? Click here

Semi-supervised Meta-learning for Cross-domain Few-shot Intent Classification

التعلم التلوي شبه الإشرافه لتصنيف النية القليل من المجال

443   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Meta learning aims to optimize the model's capability to generalize to new tasks and domains. Lacking a data-efficient way to create meta training tasks has prevented the application of meta-learning to the real-world few shot learning scenarios. Recent studies have proposed unsupervised approaches to create meta-training tasks from unlabeled data for free, e.g., the SMLMT method (Bansal et al., 2020a) constructs unsupervised multi-class classification tasks from the unlabeled text by randomly masking words in the sentence and let the meta learner choose which word to fill in the blank. This study proposes a semi-supervised meta-learning approach that incorporates both the representation power of large pre-trained language models and the generalization capability of prototypical networks enhanced by SMLMT. The semi-supervised meta training approach avoids overfitting prototypical networks on a small number of labeled training examples and quickly learns cross-domain task-specific representation only from a few supporting examples. By incorporating SMLMT with prototypical networks, the meta learner generalizes better to unseen domains and gains higher accuracy on out-of-scope examples without the heavy lifting of pre-training. We observe significant improvement in few-shot generalization after training only a few epochs on the intent classification tasks evaluated in a multi-domain setting.

References used
https://aclanthology.org/

rate research

Read More

Natural Language Processing (NLP) is increasingly relying on general end-to-end systems that need to handle many different linguistic phenomena and nuances. For example, a Natural Language Inference (NLI) system has to recognize sentiment, handle num bers, perform coreference, etc. Our solutions to complex problems are still far from perfect, so it is important to create systems that can learn to correct mistakes quickly, incrementally, and with little training data. In this work, we propose a continual few-shot learning (CFL) task, in which a system is challenged with a difficult phenomenon and asked to learn to correct mistakes with only a few (10 to 15) training examples. To this end, we first create benchmarks based on previously annotated data: two NLI (ANLI and SNLI) and one sentiment analysis (IMDB) datasets. Next, we present various baselines from diverse paradigms (e.g., memory-aware synapses and Prototypical networks) and compare them on few-shot learning and continual few-shot learning setups. Our contributions are in creating a benchmark suite and evaluation protocol for continual few-shot learning on the text classification tasks, and making several interesting observations on the behavior of similarity-based methods. We hope that our work serves as a useful starting point for future work on this important topic.
Intent classification (IC) and slot filling (SF) are critical building blocks in task-oriented dialogue systems. These two tasks are closely-related and can flourish each other. Since only a few utterances can be utilized for identifying fast-emergin g new intents and slots, data scarcity issue often occurs when implementing IC and SF. However, few IC/SF models perform well when the number of training samples per class is quite small. In this paper, we propose a novel explicit-joint and supervised-contrastive learning framework for few-shot intent classification and slot filling. Its highlights are as follows. (i) The model extracts intent and slot representations via bidirectional interactions, and extends prototypical network to achieve explicit-joint learning, which guarantees that IC and SF tasks can mutually reinforce each other. (ii) The model integrates with supervised contrastive learning, which ensures that samples from same class are pulled together and samples from different classes are pushed apart. In addition, the model follows a not common but practical way to construct the episode, which gets rid of the traditional setting with fixed way and shot, and allows for unbalanced datasets. Extensive experiments on three public datasets show that our model can achieve promising performance.
This paper investigates the effectiveness of pre-training for few-shot intent classification. While existing paradigms commonly further pre-train language models such as BERT on a vast amount of unlabeled corpus, we find it highly effective and effic ient to simply fine-tune BERT with a small set of labeled utterances from public datasets. Specifically, fine-tuning BERT with roughly 1,000 labeled data yields a pre-trained model -- IntentBERT, which can easily surpass the performance of existing pre-trained models for few-shot intent classification on novel domains with very different semantics. The high effectiveness of IntentBERT confirms the feasibility and practicality of few-shot intent detection, and its high generalization ability across different domains suggests that intent classification tasks may share a similar underlying structure, which can be efficiently learned from a small set of labeled data. The source code can be found at https://github.com/hdzhang-code/IntentBERT.
Multilingual pre-trained contextual embedding models (Devlin et al., 2019) have achieved impressive performance on zero-shot cross-lingual transfer tasks. Finding the most effective fine-tuning strategy to fine-tune these models on high-resource lang uages so that it transfers well to the zero-shot languages is a non-trivial task. In this paper, we propose a novel meta-optimizer to soft-select which layers of the pre-trained model to freeze during fine-tuning. We train the meta-optimizer by simulating the zero-shot transfer scenario. Results on cross-lingual natural language inference show that our approach improves over the simple fine-tuning baseline and X-MAML (Nooralahzadeh et al., 2020).
Metaphors are ubiquitous in natural language, and detecting them requires contextual reasoning about whether a semantic incongruence actually exists. Most existing work addresses this problem using pre-trained contextualized models. Despite their suc cess, these models require a large amount of labeled data and are not linguistically-based. In this paper, we proposed a ContrAstive pre-Trained modEl (CATE) for metaphor detection with semi-supervised learning. Our model first uses a pre-trained model to obtain a contextual representation of target words and employs a contrastive objective to promote an increased distance between target words' literal and metaphorical senses based on linguistic theories. Furthermore, we propose a simple strategy to collect large-scale candidate instances from the general corpus and generalize the model via self-training. Extensive experiments show that CATE achieves better performance against state-of-the-art baselines on several benchmark datasets.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا