Do you want to publish a course? Click here

Stanford MLab at SemEval-2021 Task 1: Tree-Based Modelling of Lexical Complexity using Word Embeddings

Stanford Mlab في مهمة Semeval-2021 1: النمذجة القائمة على الأشجار من التعقيد المعجمي باستخدام Word Embeddings

294   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents our system for the single- and multi-word lexical complexity prediction tasks of SemEval Task 1: Lexical Complexity Prediction. Text comprehension depends on the reader's ability to understand the words present in it; evaluating the lexical complexity of such texts can enable readers to find an appropriate text and systems to tailor a text to an audience's needs. We present our model pipeline, which applies a combination of embedding-based and manual features to predict lexical complexity on the CompLex English dataset using various tree-based and linear models. Our method is ranked 27 / 54 on single-word prediction and 14 / 37 on multi-word prediction.



References used
https://aclanthology.org/
rate research

Read More

We present our approach to predicting lexical complexity of words in specific contexts, as entered LCP Shared Task 1 at SemEval 2021. The approach consists of separating sentences into smaller chunks, embedding them with Sent2Vec, and reducing the em beddings into a simpler vector used as input to a neural network, the latter for predicting the complexity of words and expressions. Results show that the pre-trained sentence embeddings are not able to capture lexical complexity from the language when applied in cross-domain applications.
Evaluating the complexity of a target word in a sentential context is the aim of the Lexical Complexity Prediction task at SemEval-2021. This paper presents the system created to assess single words lexical complexity, combining linguistic and psycho linguistic variables in a set of experiments involving random forest and XGboost regressors. Beyond encoding out-of-context information about the lemma, we implemented features based on pre-trained language models to model the target word's in-context complexity.
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh ich words and multi-word expressions (MWEs) were annotated with respect to their complexity using a five point Likert scale. SemEval-2021 Task 1 featured two Sub-tasks: Sub-task 1 focused on single words and Sub-task 2 focused on MWEs. The competition attracted 198 teams in total, of which 54 teams submitted official runs on the test data to Sub-task 1 and 37 to Sub-task 2.
This paper describes our contribution to SemEval 2021 Task 1 (Shardlow et al., 2021): Lexical Complexity Prediction. In our approach, we leverage the ELECTRA model and attempt to mirror the data annotation scheme. Although the task is a regression ta sk, we show that we can treat it as an aggregation of several classification and regression models. This somewhat counter-intuitive approach achieved an MAE score of 0.0654 for Sub-Task 1 and MAE of 0.0811 on Sub-Task 2. Additionally, we used the concept of weak supervision signals from Gloss-BERT in our work, and it significantly improved the MAE score in Sub-Task 1.
The present work aims at assigning a complexity score between 0 and 1 to a target word or phrase in a given sentence. For each Single Word Target, a Random Forest Regressor is trained on a feature set consisting of lexical, semantic, and syntactic in formation about the target. For each Multiword Target, a set of individual word features is taken along with single word complexities in the feature space. The system yielded the Pearson correlation of 0.7402 and 0.8244 on the test set for the Single and Multiword Targets, respectively.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا