تقدم هذه الورقة نظامنا لمهام تنبؤ التعقيد المعجمية الواحدة والمتعددية لمهمة Semeval 1: تنبؤ التعقيد المعجمي.يعتمد فهم النص على قدرة القارئ على فهم الكلمات الموجودة فيها؛يمكن لتقييم التعقيد المعجمي لهذه النصوص يمكن أن تمكن القراء من العثور على نص وأنظمة مناسبة لتكييف نص لاحتياجات الجمهور.نقدم خط أنابيبنا النموذجي، وهو ما ينطبق على مجموعة من الميزات القائمة على التضمين والتنبؤ بالتعقيد المعجمي على مجموعة بيانات اللغة الإنجليزية المعقدة باستخدام العديد من النماذج القائمة على الأشجار والخطية.تم تصنيف طريقتنا 27/54 على التنبؤ بكلمة واحدة و 14/37 على التنبؤ متعدد الكلمات.
This paper presents our system for the single- and multi-word lexical complexity prediction tasks of SemEval Task 1: Lexical Complexity Prediction. Text comprehension depends on the reader's ability to understand the words present in it; evaluating the lexical complexity of such texts can enable readers to find an appropriate text and systems to tailor a text to an audience's needs. We present our model pipeline, which applies a combination of embedding-based and manual features to predict lexical complexity on the CompLex English dataset using various tree-based and linear models. Our method is ranked 27 / 54 on single-word prediction and 14 / 37 on multi-word prediction.
References used
https://aclanthology.org/
We present our approach to predicting lexical complexity of words in specific contexts, as entered LCP Shared Task 1 at SemEval 2021. The approach consists of separating sentences into smaller chunks, embedding them with Sent2Vec, and reducing the em
Evaluating the complexity of a target word in a sentential context is the aim of the Lexical Complexity Prediction task at SemEval-2021. This paper presents the system created to assess single words lexical complexity, combining linguistic and psycho
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh
This paper describes our contribution to SemEval 2021 Task 1 (Shardlow et al., 2021): Lexical Complexity Prediction. In our approach, we leverage the ELECTRA model and attempt to mirror the data annotation scheme. Although the task is a regression ta
The present work aims at assigning a complexity score between 0 and 1 to a target word or phrase in a given sentence. For each Single Word Target, a Random Forest Regressor is trained on a feature set consisting of lexical, semantic, and syntactic in