تصف هذه الورقة نظامنا للتحقق من العبارات مع الجداول في مهمة Semeval-2021 9. قمنا بتطوير نظام للتحقق من مرحلتين يعتمد على أحدث طراز Grappa المدرب مسبقا على الطاولة.يتم وضع شبكات متعددة للتحقق من أنواع مختلفة من العبارات في DataSet المسابقة وتطبق تقنية تكيفية نموذجية نموذجية على نماذج الفرقة في كلتا المراحل.يتم استخدام وحدة عملية تشغيل رمزية قائمة على البيان في نظامنا في نظامنا لتعزيز أداء النظام واستقراره.يحقق نموذجنا المركز الثاني في التصنيف ثلاثي الاتجاه والمركز الرابع في تقييم التصنيف الثاني في الاتجاه.تظهر العديد من التجارب الاجتثاث فعالية الوحدات المختلفة المقترحة في هذه الورقة.
This paper describes our system for verifying statements with tables at SemEval-2021 Task 9. We developed a two-stage verifying system based on the latest table-based pre-trained model GraPPa. Multiple networks are devised to verify different types of statements in the competition dataset and an adaptive model ensembling technique is applied to ensemble models in both stages. A statement-slot-based symbolic operation module is also used in our system to further improve the performance and stability of the system. Our model achieves second place in the 3-way classification and fourth place in the 2-way classification evaluation. Several ablation experiments show the effectiveness of different modules proposed in this paper.
References used
https://aclanthology.org/
Recently, there has been an interest in the research on factual verification and prediction over structured data like tables and graphs. To circumvent any false news incident, it is necessary to not only model and predict over structured data efficie
This paper describes our approach for Task 9 of SemEval 2021: Statement Verification and Evidence Finding with Tables. We participated in both subtasks, namely statement verification and evidence finding. For the subtask of statement verification, we
Tables are widely used in various kinds of documents to present information concisely. Understanding tables is a challenging problem that requires an understanding of language and table structure, along with numerical and logical reasoning. In this p
This paper describes the system submitted in the SemEval-2021 Statement Verification and Evidence Finding with Tables task. The system relies on candidate generation for logical forms on the table based on keyword matching and dependency parsing on the claim statements.
Understanding tables is an important and relevant task that involves understanding table structure as well as being able to compare and contrast information within cells. In this paper, we address this challenge by presenting a new dataset and tasks