إن القدرة على التباين في استخدام اللغة ضروري للمتحدثين لتحقيق أهدافهم المحادثة، على سبيل المثال عند الإشارة إلى الكائنات في البيئات المرئية.نقول أن التنوع لا ينبغي أن يكون على غرار كهدف مستقل في الحوار، ولكن يجب أن يكون نتيجة لذلك أو منتج ثاني لتوليد اللغة الموجهة نحو الأهداف.تم التحقيق في خطوط عمل مختلفة في توليد اللغة العصبية طرق فك تشفيرها لتوليد المزيد من الكلمات المتنوعة، أو زيادة المعلوماتية من خلال التفكير العملي.نربط تلك خطوط العمل وتحليل كيفية تأثير المنطق العملي أثناء فك التشفير على تنوع التسميات التوضيحية الناتجة عنها.نجد أن تعزيز التنوع نفسه لا يؤدي إلى تسهيلات مفيدة بشكل أكثر عمليا، لكن المنطق العملي يزيد من التنوع المعجمي.أخيرا، نناقش ما إذا كان الاستفادة من المعلوماتية بطرق غير معقولة بمرحلة ما بين اللغوي.
The ability for variation in language use is necessary for speakers to achieve their conversational goals, for instance when referring to objects in visual environments. We argue that diversity should not be modelled as an independent objective in dialogue, but should rather be a result or by-product of goal-oriented language generation. Different lines of work in neural language generation investigated decoding methods for generating more diverse utterances, or increasing the informativity through pragmatic reasoning. We connect those lines of work and analyze how pragmatic reasoning during decoding affects the diversity of generated image captions. We find that boosting diversity itself does not result in more pragmatically informative captions, but pragmatic reasoning does increase lexical diversity. Finally, we discuss whether the gain in informativity is achieved in linguistically plausible ways.
References used
https://aclanthology.org/
The knowledge of scripts, common chains of events in stereotypical scenarios, is a valuable asset for task-oriented natural language understanding systems. We propose the Goal-Oriented Script Construction task, where a model produces a sequence of st
In goal-oriented dialogue systems, users provide information through slot values to achieve specific goals. Practically, some combinations of slot values can be invalid according to external knowledge. For example, a combination of cheese pizza'' (a
With the increasing use of machine-learning driven algorithmic judgements, it is critical to develop models that are robust to evolving or manipulated inputs. We propose an extensive analysis of model robustness against linguistic variation in the se
This paper presents an automatic method to evaluate the naturalness of natural language generation in dialogue systems. While this task was previously rendered through expensive and time-consuming human labor, we present this novel task of automatic
For each goal-oriented dialog task of interest, large amounts of data need to be collected for end-to-end learning of a neural dialog system. Collecting that data is a costly and time-consuming process. Instead, we show that we can use only a small a