Do you want to publish a course? Click here

NoahNMT at WMT 2021: Dual Transfer for Very Low Resource Supervised Machine Translation

Noahnmt في WMT 2021: النقل المزدوج للترجمة الآلية منخفضة الموارد

386   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

This paper describes the NoahNMT system submitted to the WMT 2021 shared task of Very Low Resource Supervised Machine Translation. The system is a standard Transformer model equipped with our recent technique of dual transfer. It also employs widely used techniques that are known to be helpful for neural machine translation, including iterative back-translation, selected finetuning, and ensemble. The final submission achieves the top BLEU for three translation directions.

References used
https://aclanthology.org/

rate research

Read More

We present the findings of the WMT2021 Shared Tasks in Unsupervised MT and Very Low Resource Supervised MT. Within the task, the community studied very low resource translation between German and Upper Sorbian, unsupervised translation between German and Lower Sorbian and low resource translation between Russian and Chuvash, all minority languages with active language communities working on preserving the languages, who are partners in the evaluation. Thanks to this, we were able to obtain most digital data available for these languages and offer them to the task participants. In total, six teams participated in the shared task. The paper discusses the background, presents the tasks and results, and discusses best practices for the future.
In this paper, we present the systems submitted by our team from the Institute of ICT (HEIG-VD / HES-SO) to the Unsupervised MT and Very Low Resource Supervised MT task. We first study the improvements brought to a baseline system by techniques such as back-translation and initialization from a parent model. We find that both techniques are beneficial and suffice to reach performance that compares with more sophisticated systems from the 2020 task. We then present the application of this system to the 2021 task for low-resource supervised Upper Sorbian (HSB) to German translation, in both directions. Finally, we present a contrastive system for HSB-DE in both directions, and for unsupervised German to Lower Sorbian (DSB) translation, which uses multi-task training with various training schedules to improve over the baseline.
This paper describes the submission to the IWSLT 2021 Low-Resource Speech Translation Shared Task by IMS team. We utilize state-of-the-art models combined with several data augmentation, multi-task and transfer learning approaches for the automatic s peech recognition (ASR) and machine translation (MT) steps of our cascaded system. Moreover, we also explore the feasibility of a full end-to-end speech translation (ST) model in the case of very constrained amount of ground truth labeled data. Our best system achieves the best performance among all submitted systems for Congolese Swahili to English and French with BLEU scores 7.7 and 13.7 respectively, and the second best result for Coastal Swahili to English with BLEU score 14.9.
This paper describes Lingua Custodia's submission to the WMT21 shared task on machine translation using terminologies. We consider three directions, namely English to French, Russian, and Chinese. We rely on a Transformer-based architecture as a buil ding block, and we explore a method which introduces two main changes to the standard procedure to handle terminologies. The first one consists in augmenting the training data in such a way as to encourage the model to learn a copy behavior when it encounters terminology constraint terms. The second change is constraint token masking, whose purpose is to ease copy behavior learning and to improve model generalization. Empirical results show that our method satisfies most terminology constraints while maintaining high translation quality.
For most language combinations and parallel data is either scarce or simply unavailable. To address this and unsupervised machine translation (UMT) exploits large amounts of monolingual data by using synthetic data generation techniques such as back- translation and noising and while self-supervised NMT (SSNMT) identifies parallel sentences in smaller comparable data and trains on them. To this date and the inclusion of UMT data generation techniques in SSNMT has not been investigated. We show that including UMT techniques into SSNMT significantly outperforms SSNMT (up to +4.3 BLEU and af2en) as well as statistical (+50.8 BLEU) and hybrid UMT (+51.5 BLEU) baselines on related and distantly-related and unrelated language pairs.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا