Using a single channel active Raman gain medium we show a $(220pm 20)$ns advance time for an optical pulse of $tau_{FWHM}=15.4 mu$s propagating through a 10 cm medium, a lead time that is comparable to what was reported previously. In addition, we have verified experimentally all the features associated with this single channel Raman gain system. Our results show that the reported gain-assisted superluminal propagation should not be attributed to the interference between the two frequencies of the pump field.
In this work we consider a possible conceptual similarity between recent, amazing OPERA experiment of the superluminal propagation of neutrino and experiment of the gain-assisted superluminal light propagation realized about ten years ago. Last experiment refers on the propagation of the light, precisely laser pulse through a medium, precisely caesium atomic gas, with characteristic anomalous dispersion and corresponding negative group-velocity index with very large amplitude between two closely spaced gain lines (that is in some way similar to quantum theory of the ferromagnetism). It implies superluminal propagation of the light through this medium. Nevertheless all this, at it has been pointed out by authors, is not at odds with causality or special relativity, since it simply represents a direct consequence of the classical interference between ... different frequency components. We suggest that OPERA experiment can be in some way conceptually similar to the gain-assisted superluminal light propagation experiment. For this reason we suppose too that OPERA experiment can be simply explained in full agreement with causality and special relativity if there is some medium, precisely a scalar field (e.g. dark matter field, Higgs field or similar) through which neutrino propagates. We prove that, according to OPERA experiment data, supposed medium must be non-dispersive while its refractive index must be positive, smaller but relatively close to 1 (that is in some way similar to quantum theory of the diamagnetism). If it is true OPERA experiment results do not mean that special theory of relativity is broken, but they mean detection of suggested medium, i.e. a scalar field (e.g. dark matter field, Higgs field or similar).
We extend our earlier investigations [Opt. Commun. {bf 179}, 97 (2000)] on the enhancement of magneto-optical rotation (MOR) to include inhomogeneous broadening. We introduce a control field that counter-propagates with respect to the probe field. We derive analytical results for the susceptibilities corresponding to the two circular polarization components of the probe field. From the analytical results we identify and numerically demonstrate the region of parameters where significantly large magneto-optical rotation (MOR) can be obtained. From the numerical results we isolate the significance of the magnetic field and the control field in enhancement of MOR. The control field opens up many new regions of the frequencies of the probe where large magneto-optical rotation occurs. We also report that a large enhancement of MOR can be obtained by operating the probe and control field in two-photon resonance condition.
We consider the simultaneous propagation of a pair of Raman-resonant, frequency-modulated (chirped) laser pulses in an optically thick medium, modeled by an ensemble of $Lambda$-atoms. A self-organization (matching`) effect is shown for the chirped pulse pair, which leads to a quasi-lossless propagation. Furthermore, we demonstrate that a well-defined coherent superposition of the atomic ground states and, correspondingly, a coherence is robustly created in the medium that can be controlled by amplitudes of the laser pulses. The proposed scheme can be applied to substantially increase the efficiency of the optical wave mixing processes, as well as in other nonlinear processes where the initial preparation of a spatially extended medium in a coherent superposition state is required.
We clarify the optimal conditions for the protocol of Raman sideband cooling (RSC) of a single atom confined with a tightly focused far-off-resonant optical dipole trap (optical tweezers). The protocol ultimately pursues cooling to a three-dimensional ground state of the confining potential. We show that the RSC protocol has to fulfil a set of critical requirements for the parameters of cooling beams and the excitation geometry to be effective in a most general three-dimensional confguration and for an atom, having initial temperature between the recoil and the Doppler bounds. We perform a numerical simulation of the Raman passage for an example of an $^{85}$Rb atom taking into account the full level structure and all possible transition channels.
Electromagnetically-induced transparency has become an important tool to control the optical properties of dense media. However, in a broad class of systems, the interplay between inhomogeneous broadening and the existence of several excited levels may lead to a vanishing transparency. Here, by identifying the underlying physical mechanisms resulting in this effect, we show that transparency can be strongly enhanced. We thereby demonstrate a 5-fold enhancement in a room-temperature vapor of alkali-metal atoms via a specific shaping of the atomic velocity distribution.
K.J. Jiang
,L. Deng
,
.
(2007)
.
"Superluminal propagation of an optical pulse in a Doppler broadened three-state, single channel active Raman gain medium"
.
Lu Deng
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا