No Arabic abstract
The entanglement dynamics of arrays of qubits is analysed in the presence of some general sources of noise and disorder. In particular, we consider linear chains of Josephson qubits in experimentally realistic conditions. Electromagnetic and other (spin or boson) fluctuations due to the background circuitry and surrounding substrate, finite temperature in the external environment, and disorder in the initial preparation and the control parameters are embedded into our model. We show that the amount of disorder that is typically present in current experiments does not affect the entanglement dynamics significantly, while the presence of noise can have a drastic influence on the generation and propagation of entanglement. We examine under which circumstances the system exhibits steady-state entanglement for both short (N < 10) and long (N > 30) chains and show that, remarkably, there are parameter regimes where the steady-state entanglement is strictly non-monotonic as a function of the noise strength. We also present optimized schemes for entanglement verification and quantification based on simple correlation measurements that are experimentally more economic than state tomography.
We investigate the performance of superconducting flux qubits for the adiabatic quantum simulation of long distance entanglement (LDE), namely a finite ground-state entanglement between the end spins of a quantum spin chain with open boundary conditions. As such, LDE can be considered an elementary precursor of edge modes and topological order. We discuss two possible implementations which simulate open chains with uniform bulk and weak end bonds, either with Ising or with XX nearest-neighbor interactions. In both cases we discuss a suitable protocol for the adiabatic preparation of the ground state in the physical regimes featuring LDE. In the first case the adiabatic manipulation and the Ising interactions are realized using dc currents, while in the second case microwaves fields are used to control the smoothness of the transformation and to realize the effective XX interactions. We demonstrate the adiabatic preparation of the end-to-end entanglement in chains of four qubits with realistic parameters and on a relatively fast time scale.
Entanglement in quantum XY spin chains of arbitrary length is investigated via a recently-developed global measure suitable for generic quantum many-body systems. The entanglement surface is determined over the phase diagram, and found to exhibit structure richer than expected. Near the critical line, the entanglement is peaked (albeit analytically), consistent with the notion that entanglement--the non-factorization of wave functions--reflects quantum correlations. Singularity does, however, accompany the critical line, as revealed by the divergence of the field-derivative of the entanglement along the line. The form of this singularity is dictated by the universality class controlling the quantum phase transition.
We study the creation and distribution of entanglement in disordered $XY$-type spin-$1/2$ chains for the paradigmatic case of a single flipped spin prepared on a fully polarized background. The local magnetic field is set to follow a disordered long-range-correlated sequence with power-law spectrum. Depending on the degree of correlations of the disorder, a set of extended modes emerge in the middle of the band yielding an interplay between localization and delocalization. As a consequence, a rich variety of entanglement distribution patterns arises, which we evaluate here through the concurrence between two spins. We show that, even in the presence of disorder, the entanglement wave can be pushed to spread out reaching distant sites and also enhance pairwise entanglement between the initial site and the rest of the chain. We also study the propagation of an initial maximally-entangled state through the chain and show that correlated disorder improves the transmission quite significantly when compared with the uncorrelated counterpart. Our work contributes in designing solid-state devices for quantum information processing in the realistic setting of correlated static disorder.
We study the entanglement dynamics and relaxation properties of a system of two interacting qubits in the two cases (I) two independent bosonic baths and (II) one common bath, at temperature T. The entanglement dynamics is studied in terms of the concurrence C (t) between the two spins and of the von Neumann entropy S(t) with respect to the bath, as a function of time. We prove that the system does thermalize. In the case (II) of a single bath, the existence of a decoherence-free (DFS) subspace makes entanglement dynamics very rich. We show that when the system is initially in a state with a component in the DFS the relaxation time is surprisingly long, showing the existence of semi-decoherence free subspaces. The equilibrium state in this case is not the Gibbs state. The entanglement dynamics for the single bath case is also studied as a function of temperature, coupling strength with the environment and strength of tunneling coupling. The case of the mixed state is finally shown and discussed.
Isotropic XX models of one-dimensional spin-1/2 chains are investigated with the aim to elucidate the formal structure and the physical properties that allow these systems to act as channels for long-distance, high-fidelity quantum teleportation. We introduce two types of models: I) open, dimerized XX chains, and II) open XX chains with small end bonds. For both models we obtain the exact expressions for the end-to-end correlations and the scaling of the energy gap with the length of the chain. We determine the end-to-end concurrence and show that model I) supports true long-distance entanglement at zero temperature, while model II) supports {it ``quasi long-distance} entanglement that slowly falls off with the size of the chain. Due to the different scalings of the gaps, respectively exponential for model I) and algebraic in model II), we demonstrate that the latter allows for efficient qubit teleportation with high fidelity in sufficiently long chains even at moderately low temperatures.