Do you want to publish a course? Click here

Mathematical framework for simulation of quantum fields in complex interferometers using the two-photon formalism

78   0   0.0 ( 0 )
 Added by Nergis Mavalvala
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a mathematical framework for simulation of optical fields in complex gravitational-wave interferometers. The simulation framework uses the two-photon formalism for optical fields and includes radiation pressure effects, an important addition required for simulating signal and noise fields in next-generation interferometers with high circulating power. We present a comparison of results from the simulation with analytical calculation and show that accurate agreement is achieved.



rate research

Read More

343 - F. Gieres 1999
By a series of simple examples, we illustrate how the lack of mathematical concern can readily lead to surprising mathematical contradictions in wave mechanics. The basic mathematical notions allowing for a precise formulation of the theory are then summarized and it is shown how they lead to an elucidation and deeper understanding of the aforementioned problems. After stressing the equivalence between wave mechanics and the other formulations of quantum mechanics, i.e. matrix mechanics and Diracs abstract Hilbert space formulation, we devote the second part of our paper to the latter approach: we discuss the problems and shortcomings of this formalism as well as those of the bra and ket notation introduced by Dirac in this context. In conclusion, we indicate how all of these problems can be solved or at least avoided.
Quantum squeezing, a major resource for quantum information processing and quantum metrology, is best analyzed in terms of the field quadratures - the quantum optical analogues of position and momentum, which form the continuous-variable formalism of quantum light. Degenerate squeezing admits a very helpful and simple description in terms of the single-mode quadrature operators, but the non-degenerate case, i.e. when the squeezing involves pairs of modes, requires a more complicated treatment involving correlations between the quadratures of the different modes. We introduce a generalized set of complex quadrature operators that treats degenerate and non-degenerate squeezing on equal footing. We describe the mode-pairs (and photon-pairs) as a single entity, generalizing the concept of single-mode quadrature operators to two-mode fields of any bandwidth. These complex operators completely describe the SU(1,1) algebra of two-photon devices and directly relate to observable physical quantities, like power and visibility. Based on this formalism, we discuss the measurement of optically-broad squeezed signals with direct detection, and present a compact set of phase-dependent observables that completely and intuitively determine the two-mode squeezed state, and quantify the degree of inseparability and entanglement between the modes.
We present a quantum fingerprinting protocol relying on two-photon interference which does not require a shared phase reference between the parties preparing optical signals carrying data fingerprints. We show that the scaling of the protocol, in terms of transmittable classical information, is analogous to the recently proposed and demonstrated scheme based on coherent pulses and first-order interference, offering comparable advantage over classical fingerprinting protocols without access to shared prior randomness. We analyze the protocol taking into account non-Poissonian photon statistics of optical signals and a variety of imperfections, such as transmission losses, dark counts, and residual distinguishability. The impact of these effects on the protocol performance is quantified with the help of Chernoff information.
489 - J. T. Francis , M. S. Tame 2020
The addition of a photon into the same mode as a coherent state produces a nonclassical state that has interesting features, including quadrature squeezing and a sub-Poissonian photon-number distribution. The squeezed nature of photon-added coherent (PAC) states potentially offers an advantage in quantum sensing applications. Previous theoretical works have employed a single-mode treatment of PAC states. Here, we use a continuous-mode approach that allows us to model PAC state pulses. We study the properties of a single-photon and coherent state wavepacket superimposed with variable temporal and spectral overlap. We show that, even without perfect overlap, the state exhibits a sub-Poissonian number distribution, second-order quantum correlations and quadrature squeezing for a weak coherent state. We also include propagation loss in waveguides and study how the fidelity and other properties of PAC state pulses are affected.
We present an architecture to investigate wave-particle duality in $N$-path interferometers on a universal quantum computer involving as low as $2log N$ qubits and develop a measurement scheme which allows the efficient extraction of quantifiers of interference visibility and which-path information. We implement our algorithms for interferometers with up to $N=16$ paths in proof-of-principle experiments on a noisy intermediate-scale quantum (NISQ) device using down to $mathcal{O}(log N)$ gates and despite increasing noise consistently observe a complementary behavior between interference visibility and which-path information. Our results are in accordance with our current understanding of wave-particle duality and allow its investigation for interferometers with an exponentially growing number of paths on future quantum devices beyond the NISQ era.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا