Do you want to publish a course? Click here

Complex two-mode quadratures -- a unified formalism for continuous-variable quantum optics

82   0   0.0 ( 0 )
 Added by Leon Bello
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum squeezing, a major resource for quantum information processing and quantum metrology, is best analyzed in terms of the field quadratures - the quantum optical analogues of position and momentum, which form the continuous-variable formalism of quantum light. Degenerate squeezing admits a very helpful and simple description in terms of the single-mode quadrature operators, but the non-degenerate case, i.e. when the squeezing involves pairs of modes, requires a more complicated treatment involving correlations between the quadratures of the different modes. We introduce a generalized set of complex quadrature operators that treats degenerate and non-degenerate squeezing on equal footing. We describe the mode-pairs (and photon-pairs) as a single entity, generalizing the concept of single-mode quadrature operators to two-mode fields of any bandwidth. These complex operators completely describe the SU(1,1) algebra of two-photon devices and directly relate to observable physical quantities, like power and visibility. Based on this formalism, we discuss the measurement of optically-broad squeezed signals with direct detection, and present a compact set of phase-dependent observables that completely and intuitively determine the two-mode squeezed state, and quantify the degree of inseparability and entanglement between the modes.



rate research

Read More

I present an extensible experimental design for optical continuous-variable cluster states of arbitrary size using four offline (vacuum) squeezers and six beamsplitters. This method has all the advantages of a temporal-mode encoding [Phys. Rev. Lett. 104, 250503], including finite requirements for coherence and stability even as the computation length increases indefinitely, with none of the difficulty of inline squeezing. The extensibility stems from a construction based on Gaussian projected entangled pair states (GPEPS). The potential for use of this design within a fully fault tolerant model is discussed.
Quantum repeaters are indispensable for high-rate, long-distance quantum communications. The vision of a future quantum internet strongly hinges on realizing quantum repeaters in practice. Numerous repeaters have been proposed for discrete-variable (DV) single-photon-based quantum communications. Continuous variable (CV) encodings over the quadrature degrees of freedom of the electromagnetic field mode offer an attractive alternative. For example, CV transmission systems are easier to integrate with existing optical telecom systems compared to their DV counterparts. Yet, repeaters for CV have remained elusive. We present a novel quantum repeater scheme for CV entanglement distribution over a lossy bosonic channel that beats the direct transmission exponential rate-loss tradeoff. The scheme involves repeater nodes consisting of a) two-mode squeezed vacuum (TMSV) CV entanglement sources, b) the quantum scissors operation to perform nondeterministic noiseless linear amplification of lossy TMSV states, c) a layer of switched, mode multiplexing inspired by second-generation DV repeaters, which is the key ingredient apart from probabilistic entanglement purification that makes DV repeaters work, and d) a non-Gaussian entanglement swap operation. We report our exact results on the rate-loss envelope achieved by the scheme.
Optical telecommunication is at the heart of todays internet and is currently enabled by the transmission of intense optical signals between remote locations. As we look to the future of telecommunication, quantum mechanics promise new ways to be able to transmit and process that information. Demonstrations of quantum key distribution and quantum teleportation using multi-photon states have been performed, but only over ranges limited to one hundred kilometers. To go beyond this, we need repeaters that are compatible with these quantum multi-photon continuous variables pulses. Here we present a design for a continuous variable quantum repeaters that can distribute entangled and pure two-mode squeezed states over arbitrarily long distances with a success probability that scales only polynomially with distance. The proposed quantum repeater is composed from several basic known building blocks such as non-Gaussian operations for entanglement distillation and an iterative Gaussification protocol (for retaining the Gaussian character of the final state), but complemented with a heralded non-Gaussian entanglement swapping protocol, which allows us to avoid extensive iterations of quantum Gaussification. We characterize the performance of this scheme in terms of key rates for quantum key distribution and show a secure key can be generated over thousands of kilometers.
A novel quantum switch for continuous variables teleportation is proposed. Two pairs of EPR beams with identical frequency and constant phase relation are composed on two beamsplitters to produce two pairs of conditional entangled beams, two of which are sent to two sending stations(Alices) and others to two receiving stations(bobs). The EPR entanglement initionally results from two-mode quadrature squeezed state light. Converting the squeezed component of one of EPR sources between amplitude and phase, the input quantum state at a sender will be reproduced at two receivers in turn. The switching system manipulated by squeezed state light might be developed as a practical quantum switch device for the communication and teleportation of quantum information.
489 - J. T. Francis , M. S. Tame 2020
The addition of a photon into the same mode as a coherent state produces a nonclassical state that has interesting features, including quadrature squeezing and a sub-Poissonian photon-number distribution. The squeezed nature of photon-added coherent (PAC) states potentially offers an advantage in quantum sensing applications. Previous theoretical works have employed a single-mode treatment of PAC states. Here, we use a continuous-mode approach that allows us to model PAC state pulses. We study the properties of a single-photon and coherent state wavepacket superimposed with variable temporal and spectral overlap. We show that, even without perfect overlap, the state exhibits a sub-Poissonian number distribution, second-order quantum correlations and quadrature squeezing for a weak coherent state. We also include propagation loss in waveguides and study how the fidelity and other properties of PAC state pulses are affected.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا