Do you want to publish a course? Click here

Mathematical surprises and Diracs formalism in quantum mechanics

344   0   0.0 ( 0 )
 Added by Francois Gieres
 Publication date 1999
  fields Physics
and research's language is English
 Authors F. Gieres




Ask ChatGPT about the research

By a series of simple examples, we illustrate how the lack of mathematical concern can readily lead to surprising mathematical contradictions in wave mechanics. The basic mathematical notions allowing for a precise formulation of the theory are then summarized and it is shown how they lead to an elucidation and deeper understanding of the aforementioned problems. After stressing the equivalence between wave mechanics and the other formulations of quantum mechanics, i.e. matrix mechanics and Diracs abstract Hilbert space formulation, we devote the second part of our paper to the latter approach: we discuss the problems and shortcomings of this formalism as well as those of the bra and ket notation introduced by Dirac in this context. In conclusion, we indicate how all of these problems can be solved or at least avoided.



rate research

Read More

We propose a history state formalism for a Dirac particle. By introducing a reference quantum clock system it is first shown that Diracs equation can be derived by enforcing a timeless Wheeler-DeWitt-like equation for a global state. The Hilbert space of the whole system constitutes a unitary representation of the Lorentz group with respect to a properly defined invariant product, and the proper normalization of global states directly ensures standard Diracs norm. Moreover, by introducing a second quantum clock, the previous invariant product emerges naturally from a generalized continuity equation. The invariant parameter $tau$ associated with this second clock labels history states for different particles, yielding an observable evolution in the case of an hypothetical superposition of different masses. Analytical expressions for both space-time density and electron-time entanglement are provided for two particular families of electrons states, the former including Pryce localized particles.
We study decoherence in a simple quantum mechanical model using two approaches. Firstly, we follow the conventional approach to decoherence where one is interested in solving the reduced density matrix from the perturbative master equation. Secondly, we consider our novel correlator approach to decoherence where entropy is generated by neglecting observationally inaccessible correlators. We show that both methods can accurately predict decoherence time scales. However, the perturbative master equation generically suffers from instabilities which prevents us to reliably calculate the systems total entropy increase. We also discuss the relevance of the results in our quantum mechanical model for interacting field theories.
201 - C. A. Aidala , T. C. Rogers 2021
It is unusual to find QCD factorization explained in the language of quantum information science. However, we will discuss how the issue of factorization and its breaking in high-energy QCD processes relates to phenomena like decoherence and entanglement. We will elaborate with several examples and explain them in terms familiar from basic quantum mechanics and quantum information science.
77 - Thomas Corbitt , Yanbei Chen , 2005
We present a mathematical framework for simulation of optical fields in complex gravitational-wave interferometers. The simulation framework uses the two-photon formalism for optical fields and includes radiation pressure effects, an important addition required for simulating signal and noise fields in next-generation interferometers with high circulating power. We present a comparison of results from the simulation with analytical calculation and show that accurate agreement is achieved.
100 - James L. Beck 2021
A neo-classical relativistic mechanics model is presented where the spin of an electron is a natural part of its space-time path. The fourth-order equation of motion corresponds to the same Lagrangian function in proper time as in special relativity except for an additional spin energy term. The total motion can be decomposed into a sum of a local circular motion giving the spin and a global motion of the spin center, each being governed by a second-order differential equation. The local spin motion corresponds to Schrodingers zitterbewegung and is a perpetual motion; it produces magnetic and electric dipoles through the Lorentz force on the electrons point charge. The global motion is sub-luminal and described by Newtons second law in proper time, the time for a clock fixed at the spin center, where the inertia to acceleration resides. The total motion occurs at the speed of light c, consistent with the eigenvalues of Diracs velocity operators having magnitude c. A spin tensor is introduced that is the angular momentum of the electrons total motion about its spin center. The fundamental equations of motion expressed using this tensor are identical to those of the Barut-Zanghi theory; they can be expressed in an equivalent form using the same operators as in Diracs theory for the electron but applied to a state function of proper time satisfying a Dirac-Schrodinger spinor equation. This state function produces a neo-classical wave function that satisfies Diracs relativistic wave equation for the free electron when the Lorentz transformation is used to express proper time in terms of an observers space-time coordinates. In summary, the theory provides a hidden-variable model for spin that leads to Diracs relativistic wave equation and explains the electrons moment coupling to an electro-magnetic field, albeit with a magnetic moment that is one half of that in Diracs theory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا