Do you want to publish a course? Click here

Wave equations with energy dependent potentials

87   0   0.0 ( 0 )
 Added by Jiri Mares
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study wave equations with energy dependent potentials. Simple analytical models are found useful to illustrate difficulties encountered with the calculation and interpretation of observables. A formal analysis shows under which conditions such equations can be handled as evolution equation of quantum theory with an energy dependent potential. Once these conditions are met, such theory can be transformed into ordinary quantum theory.



rate research

Read More

We represent low dimensional quantum mechanical Hamiltonians by moderately sized finite matrices that reproduce the lowest O(10) boundstate energies and wave functions to machine precision. The method extends also to Hamiltonians that are neither Hermitian nor PT symmetric and thus allows to investigate whether or not the spectra in such cases are still real. Furthermore, the approach is especially useful for problems in which a position-dependent mass is adopted, for example in effective-mass models in solid-state physics or in the approximate treatment of coupled nuclear motion in molecular physics or quantum chemistry. The performance of the algorithm is demonstrated by considering the inversion motion of different isotopes of ammonia molecules within a position-dependent-mass model and some other examples of one- and two-dimensional Hamiltonians that allow for the comparison to analytical or numerical results in the literature.
148 - C. M. Dion , A. Hashemloo , 2013
We present a program to simulate the dynamics of a wave packet interacting with a time-dependent potential. The time-dependent Schrodinger equation is solved on a one-, two-, or three-dimensional spatial grid using the split operator method. The program can be compiled for execution either on a single processor or on a distributed-memory parallel computer.
62 - Fumihiko Hirosawa 2020
Discretization is a fundamental step in numerical analysis for the problems described by differential equations, and the difference between the continuous model and discrete model is one of the most important problems. In this paper, we consider the difference in the effect of the time-dependent propagation speed on the energy estimate of the solutions for the wave equation and the semi-discrete wave equation which is a discretization with respect to space variables.
Background. One important ingredient for many applications of nuclear physics to astrophysics, nuclear energy, and stockpile stewardship are cross sections for reactions of neutrons with rare isotopes. Since direct measurements are often not feasible, indirect methods, e.g. (d,p) reactions, should be used. Those (d,p) reactions may be viewed as three-body reactions and described with Faddeev techniques. Purpose. Faddeev equations in momentum space have a long tradition of utilizing separable interactions in order to arrive at sets of coupled integral equations in one variable. Optical potentials representing the effective interactions in the neutron (proton) nucleus subsystem are usually non-Hermitian as well as energy-dependent. Potential matrix elements as well as transition matrix elements calculated with them must fulfill the reciprocity theorem. The purpose of this paper is to introduce a separable, energy-dependent representation of complex, energy-dependent optical potentials that fulfill reciprocity exactly. Results. Starting from a separable, energy-independent representation of global optical potentials based on a generalization of the Ernst-Shakin-Thaler (EST) scheme, a further generalization is needed to take into account the energy dependence. Applications to n$+^{48}$Ca, n$+^{208}$Pb, and p$+^{208}$Pb are investigated for energies from 0 to 50~MeV with special emphasis on fulfilling reciprocity. Conclusions. We find that the energy-dependent separable representation of complex, energy-dependent phenomenological optical potentials fulfills reciprocity exactly. In addition, taking into account the explicit energy dependence slightly improves the description of the $S$ matrix elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا