Do you want to publish a course? Click here

High contrast Mach-Zehnder lithium atom interferometer in the Bragg regime

61   0   0.0 ( 0 )
 Added by Jacques Vigue
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have constructed an atom interferometer of the Mach-Zehnder type, operating with a supersonic beam of lithium. Atom diffraction uses Bragg diffraction on laser standing waves. With first order diffraction, our apparatus has given a large signal and a very good fringe contrast (74%), which we believe to be the highest ever observed with atom interferometers. This apparatus will be applied to high sensitivity measurements



rate research

Read More

We study the effect of quantum motion in a Mach-Zehnder interferometer where ultracold, two-level atoms cross a $pi/2 $-$pi $-$pi/2$ configuration of separated, laser illuminated regions. Explicit and exact expressions are obtained for transmission amplitudes of monochromatic, incident atomic waves using recurrence relations which take into account all possible paths: the direct ones usually considered in the simple semiclassical treatment, but including quantum motion corrections, and the paths in which the atoms are repeatedly reflected at the fields.
We consider an oscillating micromirror replacing one of the two fixed mirrors of a Mach-Zehnder interferometer. In this ideal optical set-up the quantum oscillator is subjected to the radiation pressure interaction of travelling light waves, no cavity is involved. This configuration shows that squeezed light can be generated by pure scattering on a quantum system, without involving a cavity. The squeezing can be detected at the output ports of the interferometer either by direct detection or by measuring the spectrum of the difference current. We use the Hudson-Parthasarathy equation to model the global evolution. It can describe the scattering of photons and the resulting radiation pressure interaction on the quantum oscillator. It allows to consider also the interaction with a thermal bath. In this way we have a unitary dynamics giving the evolution of oscillator and fields. The Bose fields of quantum stochastic calculus and the related generalized Weyl operators allow to describe the whole optical circuit. By working in the Heisenberg picture, the quantum Langevin equations for position and momentum and the output fields arise, which are used to describe the monitoring in continuous time of the light at the output ports. In the case of strong laser and weak radiation pressure interaction highly non-classical light is produced, and this can be revealed either by direct detection (a negative Mandel Q-parameter is found), either by the intensity spectrum of the difference current of two photodetector; in the second case a nearly complete cancellation of the shot noise can be reached. In this last case it appears that the Mach-Zehnder configuration together with the detection of the difference current corresponds to an homodyne detection scheme, so that we can say that the apparatus is measuring the spectrum of squeezing.
Imperfections in integrated photonics manufacturing have a detrimental effect on the maximal achievable visibility in interferometric architectures. These limits have profound implications for further photonics technological developments and in particular for quantum photonics technologies. Active optimisation approaches, together with reconfigurable photonics, have been proposed as a solution to overcome this. In this paper, we demonstrate an ultra-high (>60 dB) extinction ratio in a silicon photonic device consisting of cascaded Mach-Zehnder interferometers, in which additional interferometers function as variable beamsplitters. The imperfections of fabricated beamsplitters are compensated using an automated progressive optimization algorithm with no requirement for pre-calibration. This work shows the possibility of integrating and accurately controlling linear-optical components for large-scale quantum information processing and other applications.
310 - Robert B. Griffiths 2016
Possible paths of a photon passing through a nested Mach-Zehnder interferometer on its way to a detector are analyzed using the consistent histories formulation of quantum mechanics, and confirmed using a set of weak measurements (but not weak values). The results disagree with an analysis by Vaidman [ Phys. Rev. A 87 (2013) 052104 ], and agree with a conclusion reached by Li et al. [ Phys. Rev. A 88 (2013) 046102 ]. However, the analysis casts serious doubt on the claim of Salih et al. (whose authorship includes Li et al.) [ Phys. Rev. Lett. 110 (2013) 170502 ] to have constructed a protocol for counterfactual communication: a channel which can transmit information even though it contains a negligible number of photons.
162 - Nai-Le Liu , Li Li , Sixia Yu 2009
The Mach-Zehnder interferometric setup quantitatively characterizing the wave-particle duality implements in fact a joint measurement of two unsharp observables. We present a necessary and sufficient condition for such a pair of unsharp observables to be jointly measurable. The condition is shown to be equivalent to a duality inequality, which for the optimal strategy of extracting the which-path information is more stringent than the Jaeger-Shimony-Vaidman-Englert inequality.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا