Do you want to publish a course? Click here

Particle Path Through a Nested Mach-Zehnder Interferometer

311   0   0.0 ( 0 )
 Added by Robert B. Griffiths
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

Possible paths of a photon passing through a nested Mach-Zehnder interferometer on its way to a detector are analyzed using the consistent histories formulation of quantum mechanics, and confirmed using a set of weak measurements (but not weak values). The results disagree with an analysis by Vaidman [ Phys. Rev. A 87 (2013) 052104 ], and agree with a conclusion reached by Li et al. [ Phys. Rev. A 88 (2013) 046102 ]. However, the analysis casts serious doubt on the claim of Salih et al. (whose authorship includes Li et al.) [ Phys. Rev. Lett. 110 (2013) 170502 ] to have constructed a protocol for counterfactual communication: a channel which can transmit information even though it contains a negligible number of photons.

rate research

Read More

129 - Hatim Salih 2016
In a recent paper, arXiv:1604.04596, Griffiths questioned - based on an informative consistent-histories (CH) argument - the counterfactuality, for one of the bit choices, of Salih et al.s protocol for communicating without sending physical particles, Phys. Rev. Lett. 110, 170502 (2013). Here, we first show that for the Mach-Zehnder version used to explain our protocol, no family of consistent histories exists where any history has the photon travelling through the communication channel, thus rendering the question of whether the photon was in the communication channel meaningless from a CH viewpoint. We then show that for the actual Michelson-type protocol, there are consistent-histories families that include histories where the photon travels through the communication channel. We show that the probability of finding the photon in the communication channel is zero - thus proving complete counterfactuality.
145 - Robert B. Griffiths 2017
While much of the technical analysis in the preceding Comment [1] is correct, in the end it confirms the conclusion reached in my previous work [2]: a consistent histories analysis provides no support for the claim of counterfactual quantum communication put forward in [3]
In this paper, we present a coherent state-vector method which can explain the results of a nested linear Mach-Zehnder Interferometric experiment. Such interferometers are used widely in Quantum Information and Quantum Optics experiments and also in designing quantum circuits. We have specifically considered the case of an experiment by Danan emph{et al.} (Phys. Rev. Lett. textbf{111}, 240402 (2013)) where the outcome of the experiment was spooky by our intuitive guesses. However we have been able to show by our method that the results of this experiment is indeed expected within the standard formalism of Quantum Mechanics using any classical state of a single-mode radiation field as the input into the nested interferometric set-up of the aforesaid experiment and thereby looking into the power spectrum of the output beam.
192 - Robert B. Griffiths 2017
The correctness of the consistent histories analysis of weakly interacting probes, related to the path of a particle, is maintained against the criticisms in the Comment, and against the alternative approach described there, which receives no support from standard (textbook) quantum mechanics.
We consider an oscillating micromirror replacing one of the two fixed mirrors of a Mach-Zehnder interferometer. In this ideal optical set-up the quantum oscillator is subjected to the radiation pressure interaction of travelling light waves, no cavity is involved. This configuration shows that squeezed light can be generated by pure scattering on a quantum system, without involving a cavity. The squeezing can be detected at the output ports of the interferometer either by direct detection or by measuring the spectrum of the difference current. We use the Hudson-Parthasarathy equation to model the global evolution. It can describe the scattering of photons and the resulting radiation pressure interaction on the quantum oscillator. It allows to consider also the interaction with a thermal bath. In this way we have a unitary dynamics giving the evolution of oscillator and fields. The Bose fields of quantum stochastic calculus and the related generalized Weyl operators allow to describe the whole optical circuit. By working in the Heisenberg picture, the quantum Langevin equations for position and momentum and the output fields arise, which are used to describe the monitoring in continuous time of the light at the output ports. In the case of strong laser and weak radiation pressure interaction highly non-classical light is produced, and this can be revealed either by direct detection (a negative Mandel Q-parameter is found), either by the intensity spectrum of the difference current of two photodetector; in the second case a nearly complete cancellation of the shot noise can be reached. In this last case it appears that the Mach-Zehnder configuration together with the detection of the difference current corresponds to an homodyne detection scheme, so that we can say that the apparatus is measuring the spectrum of squeezing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا