Do you want to publish a course? Click here

Observation of Nonclassical Photon Statistics due to Quantum Interference

327   0   0.0 ( 0 )
 Added by Yajun Lu
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

The nonclassical effect of photon anti-bunching is observed in the mixed field of a narrow band two-photon source and a coherent field under certain condition. A variety of different features in photon statistics are found to be the consequence of a two-photon interference effect with dependence on the relative phase of the fields. Besides the anti-bunching effect, we find another one of the features to be also nonclassical. These features emphasize the importance of quantum entanglement.



rate research

Read More

We obtain photon statistics by using a quantum jump approach tailored to a system in which one or two qubits are coupled to a one-dimensional waveguide. Photons confined in the waveguide have strong interference effects, which are shown to play a vital role in quantum jumps and photon statistics. For a single qubit, for instance, bunching of transmitted photons is heralded by a jump that increases the qubit population. We show that the distribution and correlations of waiting times offer a clearer and more precise characterization of photon bunching and antibunching. Further, the waiting times can be used to characterize complex correlations of photons which are hidden in $g^{(2)}(tau)$, such as a mixture of bunching and antibunching.
Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Though an ultrabroadband nonclassical state from standard spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and quantum characterization have been a challenging task. Here we demonstrate the quantitative characterization of a multimode structure in such an ultrabroadband (150 nm FWHM) squeezed state at telecom wavelength (1.5 mu m). The nonclassical photon distribution of our highly multimode state is directly observed using a superconducting transition-edge sensor. From the observed photon correlation functions, we show that several tens of different squeezers are coexisting in the same spatial mode. We anticipate our results and technique open up a new possibility to generate and characterize nonclassical light sources for a large-scale optical quantum network in the frequency domain.
Multiparticle quantum interference is critical for our understanding and exploitation of quantum information, and for fundamental tests of quantum mechanics. A remarkable example of multi-partite correlations is exhibited by the Greenberger-Horne-Zeilinger (GHZ) state. In a GHZ state, three particles are correlated while no pairwise correlation is found. The manifestation of these strong correlations in an interferometric setting has been studied theoretically since 1990 but no three-photon GHZ interferometer has been realized experimentally. Here we demonstrate three-photon interference that does not originate from two-photon or single photon interference. We observe phase-dependent variation of three-photon coincidences with 90.5 pm 5.0 % visibility in a generalized Franson interferometer using energy-time entangled photon triplets. The demonstration of these strong correlations in an interferometric setting provides new avenues for multiphoton interferometry, fundamental tests of quantum mechanics and quantum information applications in higher dimensions.
We propose a method called `coherence swapping which enables us to create superposition of a particle in two distinct paths, which is fed with initially incoherent, independent radiations. This phenomenon is also present for the charged particles, and can be used to swap the effect of flux line due to Aharonov-Bohm effect. We propose an optical version of the experimental set-up to test the coherence swapping. The phenomenon, which is simpler than entanglement swapping or teleportation, raises some fundamental questions about true nature of wave-particle duality, and also opens up the possibility of studying the quantum erasure from a new angle.
We report measurements of two-photon interference using a cw-pumped type-II spontaneous parametric down-conversion source based on a multimode perodically poled potassium titanyl phosphate waveguide. We have used the recently demonstrated technique of controlling the spatial characteristics of the down-conversion process via intermodal dispersion to generate photon pairs in fundamental transverse modes, thus ensuring their spatial indistinguishability. Good spatial overlap of photon modes within pairs has been verified using the Hong-Ou-Mandel interferometer and the preparation of polarization entanglement in the Shih-Alley configuration, yielding visibilities consistently above 90%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا