No Arabic abstract
Broadband light sources play essential roles in diverse fields, such as high-capacity optical communications, optical coherence tomography, optical spectroscopy, and spectrograph calibration. Though an ultrabroadband nonclassical state from standard spontaneous parametric down-conversion may serve as a quantum counterpart, its detection and quantum characterization have been a challenging task. Here we demonstrate the quantitative characterization of a multimode structure in such an ultrabroadband (150 nm FWHM) squeezed state at telecom wavelength (1.5 mu m). The nonclassical photon distribution of our highly multimode state is directly observed using a superconducting transition-edge sensor. From the observed photon correlation functions, we show that several tens of different squeezers are coexisting in the same spatial mode. We anticipate our results and technique open up a new possibility to generate and characterize nonclassical light sources for a large-scale optical quantum network in the frequency domain.
Sources of photon pairs based on the spontaneous parametric down conversion process are commonly used for long distance quantum communication. The key feature for improving the range of transmission is engineering their spectral properties. Following two experimental papers [Opt. Lett., 38, 697 (2013)] and [Opt. Lett., 39, 1481 (2014)] we analytically and numerically analyze the characteristics of a source. It is based on a $beta$-barium borate (BBO) crystal cut for type II phase matching at the degenerated frequencies 755 nm $rightarrow$ 1550 nm + 1550 nm. Our analysis shows a way for full control of spectral correlation within a fiber-coupled photon pair simultaneously with optimal brightness.
The nonclassical effect of photon anti-bunching is observed in the mixed field of a narrow band two-photon source and a coherent field under certain condition. A variety of different features in photon statistics are found to be the consequence of a two-photon interference effect with dependence on the relative phase of the fields. Besides the anti-bunching effect, we find another one of the features to be also nonclassical. These features emphasize the importance of quantum entanglement.
The frequency correlation (or decorrelation) of photon pairs is of great importance in long-range quantum communications and photonic quantum computing. We experimentally characterize a spontaneous parametric down conversion (SPDC) source, based on a Beta-Barium Borate (BBO) crystal cut for type-II phase matching at 1550 nm which emits photons with the positive or no spectral correlations. Our system employs a carefully designed detection method exploiting two InGaAs detectors.
We demonstrate pulsed polarization-entangled photons generated from a periodically poled $mathrm{KTiOPO_4}$ (PPKTP) crystal in a Sagnac interferometer configuration at telecom wavelength. Since the group-velocity-matching (GVM) condition is satisfied, the intrinsic spectral purity of the photons is much higher than in the previous scheme at around 800 nm wavelength. The combination of a Sagnac interferometer and the GVM-PPKTP crystal makes our entangled source compact, stable, highly entangled, spectrally pure and ultra-bright. The photons were detected by two superconducting nanowire single photon detectors (SNSPDs) with detection efficiencies of 70% and 68% at dark counts of less than 1 kcps. We achieved fidelities of 0.981 $pm$ 0.0002 for $left| {psi ^ -} rightrangle$ and 0.980 $pm$ 0.001 for $left| {psi ^ +} rightrangle$ respectively. This GVM-PPKTP-Sagnac scheme is directly applicable to quantum communication experiments at telecom wavelength, especially in free space.
The interference of photons emitted by dissimilar sources is an essential requirement for a wide range of photonic quantum information applications. Many of these applications are in quantum communications and need to operate at standard telecommunication wavelengths to minimize the impact of photon losses and be compatible with existing infrastructure. Here we demonstrate for the first time the quantum interference of telecom-wavelength photons from an InAs/GaAs quantum dot single-photon source and a laser; an important step towards such applications. The results are in good agreement with a theoretical model, indicating a high degree of indistinguishability for the interfering photons.