Do you want to publish a course? Click here

Quantum Interference and Complex Photon Statistics in Waveguide QED

73   0   0.0 ( 0 )
 Added by Xin H. H. Zhang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain photon statistics by using a quantum jump approach tailored to a system in which one or two qubits are coupled to a one-dimensional waveguide. Photons confined in the waveguide have strong interference effects, which are shown to play a vital role in quantum jumps and photon statistics. For a single qubit, for instance, bunching of transmitted photons is heralded by a jump that increases the qubit population. We show that the distribution and correlations of waiting times offer a clearer and more precise characterization of photon bunching and antibunching. Further, the waiting times can be used to characterize complex correlations of photons which are hidden in $g^{(2)}(tau)$, such as a mixture of bunching and antibunching.



rate research

Read More

We study the propagation of photons in a one-dimensional environment consisting of two non-interacting species of photons frustratingly coupled to a single spin-1/2. The ultrastrong frustrated coupling leads to an extreme mixing of the light and matter degrees of freedom, resulting in the disintegration of the spin and a breakdown of the dressed-spin, or polaron, description. Using a combination of numerical and analytical methods, we show that the elastic response becomes increasingly weak at the effective spin frequency, showing instead an increasingly strong and broadband response at higher energies. We also show that the photons can decay into multiple photons of smaller energies. The total probability of these inelastic processes can be as large as the total elastic scattering rate, or half of the total scattering rate, which is as large as it can be. The frustrated spin induces strong anisotropic photon-photon interactions that are dominated by inter-species interactions. Our results are relevant to state-of-the-art circuit and cavity quantum electrodynamics experiments.
We consider a system consisting of a large individual quantum dot with excitonic resonance coupled to a single mode photonic cavity in the nonlinear regime when exciton- exciton interaction becomes important. We show that in the presence of time-modulated external coherent pumping the system demonstrates essentially non classical behavior reflected in sub-Poissonian statistics of exciton- and photon-modes and the Wigner functions with negative values in phase-space for time-intervals exceeding the characteristic time of dissipative processes, $tgggamma^{-1}$. It is shown that these results are cardinally different from the analogous results in the regime of the monomode continues-wave (cw) excitation.
We develop an approach to light-matter coupling in waveguide QED based upon scattering amplitudes evaluated via Dyson series. For optical states containing more than single photons, terms in this series become increasingly complex and we provide a diagrammatic recipe for their evaluation, which is capable of yielding analytic results. Our method fully specifies a combined emitter-optical state that permits investigation of light-matter entanglement generation protocols. We use our expressions to study two-photon scattering from a $Lambda$-system and find that the pole structure of the transition amplitude is dramatically altered as the two ground states are tuned from degeneracy.
326 - Y. J. Lu , Z. Y. Ou 2001
The nonclassical effect of photon anti-bunching is observed in the mixed field of a narrow band two-photon source and a coherent field under certain condition. A variety of different features in photon statistics are found to be the consequence of a two-photon interference effect with dependence on the relative phase of the fields. Besides the anti-bunching effect, we find another one of the features to be also nonclassical. These features emphasize the importance of quantum entanglement.
We employ active feedback to stabilize the frequency of single photons emitted by two separate quantum dots to an atomic standard. The transmission of a single, rubidium-based Faraday filter serves as the error signal for frequency stabilization to less than 1.5% of the emission linewidth. Long-term stability is demonstrated by Hong-Ou-Mandel interference between photons from the two quantum dots. The observed visibility of $V_{mathrm{lock}}=(41 pm 5)$% is limited only by internal dephasing of the dots. Our approach facilitates quantum networks with indistinguishable photons from distributed emitters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا