Do you want to publish a course? Click here

Inbreeding and outbreeding depressions in the Penna model as a result of crossover frequency

379   0   0.0 ( 0 )
 Added by Dietrich Stauffer
 Publication date 2007
  fields Biology
and research's language is English




Ask ChatGPT about the research

The population in the sexual Penna ageing model is first separated into several reproductively isolated groups. Then, after equilibration, sexual mixing between the groups is allowed. We study the changes in the population size due to this mixing and interpret them through a counterplay of purifying selection and of haplotype complementarity.



rate research

Read More

If in the sexual Penna ageing model conditions are applied leading to complementary bit-strings, then marriages between brothers and sisters, or between close cousins, may lead to more offspring than for unrelated couples.
The standard Penna ageing model with sexual reproduction is enlarged by adding additional bit-strings for love: Marriage happens only if the male love strings are sufficiently different from the female ones. We simulate at what level of required difference the population dies out.
126 - S. Cebrat , D. Stauffer 2007
In simulations of sexual reproduction with diploid individuals, we introduce that female haploid gametes recognize one specific allele of the genomes as a marker of the male haploid gametes. They fuse to zygotes preferrably with male gametes having a different marker than their own. This gamete recognition enhances the advantage of complementary bit-strings in the simulated diploid individuals, at low recombination rates. Thus with rare recombinations the bit-string evolve to be complementary; with recombination rate above about 0.1 instead they evolve under Darwinian purification selection, with few bits mutated.
We examine the distribution of heterozygous sites in nine European and nine Yoruban individuals whose genomic sequences were made publicly available by Complete Genomics. We show that it is possible to obtain detailed information about inbreeding when a relatively small set of whole-genome sequences is available. Rather than focus on testing for deviations from Hardy-Weinberg genotype frequencies at each site, we analyze the entire distribution of heterozygotes conditioned on the number of copies of the derived (non-chimpanzee) allele. Using Levenes exact test, we reject Hardy-Weinberg in both populations. We generalized Levenes distribution to obtain the exact distribution of the number of heterozygous individuals given that every individual has the same inbreeding coefficient, F. We estimated F to be 0.0026 in Europeans and 0.0005 in Yorubans, but we could also reject the hypothesis that F was the same in each individual. We used a composite likelihood method to estimate F in each individual and within each chromosome. Variation in F across chromosomes within individuals was too large to be consistent with sampling effects alone. Furthermore, estimates of F for each chromosome in different populations were not correlated. Our results show how detailed comparisons of population genomic data can be made to theoretical predictions. The application of methods to the Complete Genomics data set shows that the extent of apparent inbreeding varies across chromosomes and across individuals, and estimates of inbreeding coefficients are subject to unexpected levels of variation which might be partly accounted for by selection.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا