Do you want to publish a course? Click here

Monte Carlo based studies of a polarized positron source for International Linear Collider (ILC)

390   0   0.0 ( 0 )
 Added by Andreas Schaelicke
 Publication date 2005
  fields Physics
and research's language is English




Ask ChatGPT about the research

The full exploitation of the physics potential of an International Linear Collider (ILC) requires the development of a polarized positron beam. New concepts of polarized positron sources are based on the development of circularly polarized photon sources. The polarized photons create electron-positron pairs in a thin target and transfer their polarization state to the outgoing leptons. To achieve a high level of positron polarization the understanding of the production mechanisms in the target is crucial. Therefore a general framework for the simulation of polarized processes with GEANT4 is under development. In this contribution the current status of the project and its application to a study of the positron production process for the ILC is presented.



rate research

Read More

A possible solution to realize a conventional positron source driven by a several-GeV electron beam for the International Linear Collider is proposed. A 300 Hz electron linac is employed to create positrons with stretching pulse length in order to cure target thermal load. ILC requires about 2600 bunches in a train which pulse length is 1 ms. Each pulse of the 300 Hz linac creates about 130 bunches, then 2600 bunches are created in 63 ms. Optimized parameters such as drive beam energy, beam size, and target thickness, are discussed assuming a L-band capture system to maximize the capture efficiency and to mitigate the target thermal load. A slow rotating tungsten disk is employed as positron generation target.
This note describes R&D to be carried out on the data acquisition system for a calorimeter at the future International Linear Collider. A generic calorimeter and data acquisition system is described. Within this framework modified designs and potential bottlenecks within the current system are described. Solutions leading up to a technical design report will to be carried out within CALICE-UK groups.
The investigation of the energy frontier in physics requires novel concepts for future colliders. The idea of a muon collider is very appealing since it would allow to study particle collisions at up to tens of TeV energy, while offering a cleaner experimental environment with respect to hadronic colliders. One key element in the muon collider design is the low-emittance muon production. Recently, the Low EMittance Muon Accelerator (LEMMA) collaboration has explored the muon pair production close to its kinematic threshold by annihilating 45 GeV positrons with electrons in a low Z material target. In this configuration, muons are emerging from the target with a naturally low-emittance. In this paper we describe the performance of a system of segmented absorbers with alternating active layers composed of fast Cherenkov detectors together with a muon identification technique based on this detector. Passive layers were made of tungsten. We collected data corresponding to muon and electron beams produced at the H2 line in the Nort Area of the European Organization for Nuclear Research (CERN) in September 2018.
We report on the progress in flavor identification tools developed for a future $e^+e^-$ linear collider such as the International Linear Collider (ILC) and Compact Linear Collider (CLIC). Building on the work carried out by the LCFIVertex collaboration, we employ new strategies in vertex finding and jet finding, and introduce new discriminating variables for jet flavor identification. We present the performance of the new algorithms in the conditions simulated using a detector concept designed for the ILC. The algorithms have been successfully used in ILC physics simulation studies, such as those presented in the ILC Technical Design Report.
66 - T. Ogawa 2017
One of the potential problems of a Micro-Pattern Gaseous Detector (MPGD)-based Time Projection Chamber (TPC) is the Ion back Flow (IBF): ions generated through the avalanche amplification process flow back to the drift volume of the TPC and disarrange an electric field inside it. Consequently non-negligible degradation of azimuthal spatial resolution is caused due to this IBF. Meanwhile, it is necessary to collect primary ionized electrons to maintain intrinsic performance of the MPGDs. The MPGD based TPC is currently planned to be used as a central tracking detector of the International Large Detector (ILD), which is one of the detector concepts for the future International Linear Collider (ILC) project, and which requires fine azimuthal spatial resolution of less than 100 ${rm mu m}$ over the drift length of the TPC to attain high momentum resolution. Because of a unique beam structure of the ILC, the IBF is a critical issue for the realization of the ILD-TPC. Not only to suppress the ion back-flow to the drift volume, but also to allow the primary electrons pass through, a large aperture GEM-like gating device has been developed. Several bench tests for confirming the performance of the gating device have been conducted, besides that, beam test with the full detector module equipped with the gating device was carried out to verify the resolution that the full module can provide. As a result, it turned out that the developed gating device fulfills requirements for maintaining the performance of the MPGD based TPC, and it has sufficient performance for the central tracker of the ILD at the ILC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا