This note describes R&D to be carried out on the data acquisition system for a calorimeter at the future International Linear Collider. A generic calorimeter and data acquisition system is described. Within this framework modified designs and potential bottlenecks within the current system are described. Solutions leading up to a technical design report will to be carried out within CALICE-UK groups.
Based on a paper published in 2019 by the FCAL Collaboration, this talk is giving an update of the Collaborations effort to design prototype of highly compact calorimeter to instrument the very forward region of a detector at future $e^+e^-$ colliders. A luminometer prototype, based on sub-millimeter thick detector planes, is tested with an electron-beam of energy 1-5 GeV. The effective Moliere radius of the prototype comprising eight detector planes was measured to be (8.1 +/- 0.1 (stat.) +/- 0.3 (syst.))mm, and the result is well reproduced by the Monte Carlo simulation.
The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the electromagnetic calorimeter, the current baseline choice is a high granularity sampling calorimeter with tungsten as absorber and silicon detectors as sensitive material. A ``physics prototype has been constructed, consisting of thirty sensitive layers. Each layer has an active area of 18x18 cm2 and a pad size of 1x1 cm2. The absorber thickness totals 24 radiation lengths. It has been exposed in 2006 and 2007 to electron and hadron beams at the DESY and CERN beam test facilities, using a wide range of beam energies and incidence angles. In this paper, the prototype and the data acquisition chain are described and a summary of the data taken in the 2006 beam tests is presented. The methods used to subtract the pedestals and calibrate the detector are detailed. The signal-over-noise ratio has been measured at 7.63 +/- 0.01. Some electronics features have been observed; these lead to coherent noise and crosstalk between pads, and also crosstalk between sensitive and passive areas. The performance achieved in terms of uniformity and stability is presented.
The CMS experiment at the CERN LHC will be upgraded to accommodate the 5-fold increase in the instantaneous luminosity expected at the High-Luminosity LHC (HL-LHC). Concomitant with this increase will be an increase in the number of interactions in each bunch crossing and a significant increase in the total ionising dose and fluence. One part of this upgrade is the replacement of the current endcap calorimeters with a high granularity sampling calorimeter equipped with silicon sensors, designed to manage the high collision rates. As part of the development of this calorimeter, a series of beam tests have been conducted with different sampling configurations using prototype segmented silicon detectors. In the most recent of these tests, conducted in late 2018 at the CERN SPS, the performance of a prototype calorimeter equipped with ${approx}12,000rm{~channels}$ of silicon sensors was studied with beams of high-energy electrons, pions and muons. This paper describes the custom-built scalable data acquisition system that was built with readily available FPGA mezzanines and low-cost Raspberry PI computers.
One of the potential problems of a Micro-Pattern Gaseous Detector (MPGD)-based Time Projection Chamber (TPC) is the Ion back Flow (IBF): ions generated through the avalanche amplification process flow back to the drift volume of the TPC and disarrange an electric field inside it. Consequently non-negligible degradation of azimuthal spatial resolution is caused due to this IBF. Meanwhile, it is necessary to collect primary ionized electrons to maintain intrinsic performance of the MPGDs. The MPGD based TPC is currently planned to be used as a central tracking detector of the International Large Detector (ILD), which is one of the detector concepts for the future International Linear Collider (ILC) project, and which requires fine azimuthal spatial resolution of less than 100 ${rm mu m}$ over the drift length of the TPC to attain high momentum resolution. Because of a unique beam structure of the ILC, the IBF is a critical issue for the realization of the ILD-TPC. Not only to suppress the ion back-flow to the drift volume, but also to allow the primary electrons pass through, a large aperture GEM-like gating device has been developed. Several bench tests for confirming the performance of the gating device have been conducted, besides that, beam test with the full detector module equipped with the gating device was carried out to verify the resolution that the full module can provide. As a result, it turned out that the developed gating device fulfills requirements for maintaining the performance of the MPGD based TPC, and it has sufficient performance for the central tracker of the ILD at the ILC.
The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.