No Arabic abstract
We study network traffic dynamics in a two dimensional communication network with regular nodes and hubs. If the network experiences heavy message traffic, congestion occurs due to finite capacity of the nodes. We discuss strategies to manipulate hub capacity and hub connections to relieve congestion and define a coefficient of betweenness centrality (CBC), a direct measure of network traffic, which is useful for identifying hubs which are most likely to cause congestion. The addition of assortative connections to hubs of high CBC relieves congestion very efficiently.
We study the information traffic in Barabasi-Albert scale free networks wherein each node has finite queue length to store the packets. It is found that in the case of shortest path routing strategy the networks undergo a first order phase transition i.e., from a free flow state to full congestion sate, with the increasing of the packet generation rate. We also incorporate random effect (namely random selection of a neighbor to deliver packets) as well as a control method (namely the packet-dropping strategy of the congested nodes after some delay time $T$) into the routing protocol to test the traffic capacity of the heterogeneous networks. It is shown that there exists optimal value of $T$ for the networks to achieve the best handling ability, and the presence of appropriate random effect also attributes to the performance of the networks.
Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these inter-layer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be non-uniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.
We define a minimal model of traffic flows in complex networks containing the most relevant features of real routing schemes, i.e. a trade--off strategy between topological-based and traffic-based routing. The resulting collective behavior, obtained analytically for the ensemble of uncorrelated networks, is physically very rich and reproduces results recently observed in traffic simulations on scale-free networks. We find that traffic control is useless in homogeneous graphs but may improves global performance in inhomogeneous networks, enlarging the free-flow region in parameter space. Traffic control also introduces non-linear effects and, beyond a critical strength, may trigger the appearance of a congested phase in a discontinuous manner.
In this paper, we reveal the relationship between entropy rate and the congestion in complex network and solve it analytically for special cases. Finding maximizing entropy rate will lead to an improvement of traffic efficiency, we propose a method to mitigate congestion by allocating limited traffic capacity to the nodes in network rationally. Different from former strategies, our method only requires local and observable information of network, and is low-cost and widely applicable in practice. In the simulation of the phase transition for various network models, our method performs well in mitigating congestion both locally and globally. By comparison, we also uncover the deficiency of former degree-biased approaches. Owing to the rapid development of transportation networks, our method may be helpful for modern society.
Nodes in a complex networked system often engage in more than one type of interactions among them; they form a multiplex network with multiple types of links. In real-world complex systems, a nodes degree for one type of links and that for the other are not randomly distributed but correlated, which we term correlated multiplexity. In this paper we study a simple model of multiplex random networks and demonstrate that the correlated multiplexity can drastically affect the properties of giant component in the network. Specifically, when the degrees of a node for different interactions in a duplex Erdos-Renyi network are maximally correlated, the network contains the giant component for any nonzero link densities. In contrast, when the degrees of a node are maximally anti-correlated, the emergence of giant component is significantly delayed, yet the entire network becomes connected into a single component at a finite link density. We also discuss the mixing patterns and the cases with imperfect correlated multiplexity.