No Arabic abstract
Algebraic connectivity, the second eigenvalue of the Laplacian matrix, is a measure of node and link connectivity on networks. When studying interconnected networks it is useful to consider a multiplex model, where the component networks operate together with inter-layer links among them. In order to have a well-connected multilayer structure, it is necessary to optimally design these inter-layer links considering realistic constraints. In this work, we solve the problem of finding an optimal weight distribution for one-to-one inter-layer links under budget constraint. We show that for the special multiplex configurations with identical layers, the uniform weight distribution is always optimal. On the other hand, when the two layers are arbitrary, increasing the budget reveals the existence of two different regimes. Up to a certain threshold budget, the second eigenvalue of the supra-Laplacian is simple, the optimal weight distribution is uniform, and the Fiedler vector is constant on each layer. Increasing the budget past the threshold, the optimal weight distribution can be non-uniform. The interesting consequence of this result is that there is no need to solve the optimization problem when the available budget is less than the threshold, which can be easily found analytically.
The second smallest eigenvalue of the Laplacian matrix is determinative in characterizing many network properties and is known as algebraic connectivity. In this paper, we investigate the problem of maximizing algebraic connectivity in multilayer networks by allocating interlink weights subject to a budget while allowing arbitrary interconnections. For budgets below a threshold, we identify an upper-bound for maximum algebraic connectivity which is independent of interconnections pattern and is reachable with satisfying a certain regularity condition. For efficient numerical approaches in regions of no analytical solution, we cast the problem into a convex framework that explores the problem from several perspectives and, particularly, transforms into a graph embedding problem that is easier to interpret and related to the optimum diffusion phase. Allowing arbitrary interconnections entails regions of multiple transitions, giving more diverse diffusion phases with respect to one-to-one interconnection case. When there is no limitation on the interconnections pattern, we derive several analytical results characterizing the optimal weights by individual Fiedler vectors. We use the ratio of algebraic connectivity and the layer sizes to explain the results. Finally, we study the placement of a limited number of interlinks by greedy heuristics, using the Fiedler vector components of each layer.
In the real world, many complex systems interact with other systems. In addition, the intra- or inter-systems for the spread of information about infectious diseases and the transmission of infectious diseases are often not random, but with direction. Hence, in this paper, we build epidemic model based on an interconnected directed network, which can be considered as the generalization of undirected networks and bipartite networks. By using the mean-field approach, we establish the Susceptible-Infectious-Susceptible model on this network. We theoretically analyze the model, and obtain the basic reproduction number, which is also the generalization of the critical number corresponding to undirected or bipartite networks. And we prove the global stability of disease-free and endemic equilibria via the basic reproduction number as a forward bifurcation parameter. We also give a condition for epidemic prevalence only on a single subnetwork. Furthermore, we carry out numerical simulations, and find that the independence between each nodes in- and out-degrees greatly reduce the impact of the networks topological structure on disease spread.
Interconnected networks are mathematical representation of systems where two or more simple networks are coupled to each other. Depending on the coupling weight between the two components, the interconnected network can function in two regimes: one where the two networks are structurally distinguishable, and one where they are not. The coupling threshold--denoting this structural transition--is one of the most crucial concepts in interconnected networks. Yet, current information about the coupling threshold is limited. This letter presents an analytical expression for the exact value of the coupling threshold and outlines network interrelation implications.
Many real-world networks are coupled together to maintain their normal functions. Here we study the robustness of multiplex networks with interdependent and interconnected links under k-core percolation, where a node fails when it connects to a threshold of less than k neighbors. By deriving the self-consistency equations, we solve the key quantities of interests such as the critical threshold and size of the giant component analytically and validate the theoretical results with numerical simulations. We find a rich phase transition phenomenon as we tune the inter-layer coupling strength. Specifically speaking, in the ER-ER multiplex networks, with the increase of coupling strength, the size of the giant component in each layer first undergoes a first-order transition and then a second-order transition and finally a first-order transition. This is due to the nature of inter-layer links with both connectivity and dependency simultaneously. The system is more robust if the dependency on the initial robust network is strong and more vulnerable if the dependency on the initial attacked network is strong. These effects are even amplified in the cascading process. When applying our model to the SF-SF multiplex networks, the type of transition changes. The system undergoes a first-order phase transition first only when the two layers mutually coupling is very strong and a second-order transition in other conditions.
It is widely acknowledged that the initial spreaders play an important role for the wide spreading of information in complex networks. Thus, a variety of centrality-based methods have been proposed to identify the most influential spreaders. However, most of the existing studies have overlooked the fact that in real social networks it is more costly and difficult to convince influential individuals to act as initial spreaders, resulting in a high risk in maximizing the spreading. In this paper, we address this problem on the basis of the assumption that large-degree nodes are activated with a higher risk than small-degree nodes. We aim to identify the effective initial spreaders to maximize spreading when considering both the activation risk and the outbreak size of initial spreaders. On random networks, the analytical analysis reveals that the degree of optimal initial spreaders does not correspond to the largest degree of nodes in the network but rather be determined by infection probability and difference of activation risk among nodes with different degree. Here, we propose a risk-aware metric to identify the effective spreaders on real networks. The numerical simulation shows that the risk-aware metric outperforms the existing benchmark centralities in maximizing the effective spreading.