Do you want to publish a course? Click here

Recent Progress at SLAC Extracting High Charge from Highly-Polarized Photocathodes for Future-Collider Applications

111   0   0.0 ( 0 )
 Added by J. E. Clendenin
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

Future colliders such as NLC and JLC will require a highly-polarized macropulse with charge that is more than an order of magnitude beyond that which could be produced for the SLC. The maximum charge from the SLC uniformly-doped GaAs photocathode was limited by the surface charge limit (SCL). The SCL effect can be overcome by using an extremely high (>1019 cm-3) surface dopant concentration. When combined with a medium dopant concentration in the majority of the active layer (to avoid depolarization), the surface concentration has been found to degrade during normal heat cleaning (1 hour at 600 C). The Be dopant as typically used in an MBE-grown superlattice cathode is especially susceptible to this effect compared to Zn or C dopant. Some relief can be found by lowering the cleaning temperature, but the long-term general solution appears to be atomic hydrogen cleaning.



rate research

Read More

The SLAC PES, developed in the early 1990s for the SLC, has been in continuous use since 1992, during which time it has undergone numerous upgrades. The upgrades include improved cathodes with their matching laser systems, modified activation techniques and better diagnostics. The source itself and its performance with these upgrades will be described with special attention given to recent high-intensity long-pulse operation for the E-158 fixed-target parity-violating experiment.
Future linear colliders will require high levels of performance from their electron sources. A group at SLAC has recently tested a structure that substantially exceeds current collider polarized electron source pulse-profile requirements.
113 - M. Woods 1996
The SLAC Linear Collider has been colliding a polarized electron beam with an unpolarized positron beam at the Z^0 resonance for the SLD experiment since 1992. An electron beam polarization of close to 80% has been achieved for the experiment at luminosities up to 8x10^29 cm^-2 s^-1. This is the worlds first and only linear collider, and is a successful prototype for the next generation of high energy electron linear colliders. This paper discusses polarized beam operation for the SLC, and includes aspects of the polarized source, spin transport and polarimetry. Presented at the 12th International Symposium on High Energy Spin Physics held at Amsterdam, The Netherlands September 10-14, 1996.
160 - Katsuya Yonehara 2012
In order to develop an RF cavity that is applicable for a muon beam cooling channel, a new facility, called Mucool Test Area (MTA) has been built at Fermilab. MTA is a unique facility whose purpose is to test RF cavities in various conditions. There are 201 and 805 MHz high power sources, a 4-Tesla solenoid magnet, a cryogenic system including a Helium liquifier, an explosion proof apparatus to operate gaseous/liquid Hydrogen, and a beam transport line to send an intense H- beam from the Fermilab Linac accelerator to the MTA hall. Recent activities at MTA will be discussed in this document.
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the polarized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/$c$, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا