Do you want to publish a course? Click here

The polarized electron beam for the SLAC Linear Collider

114   0   0.0 ( 0 )
 Added by Michael B. Woods
 Publication date 1996
  fields
and research's language is English
 Authors M. Woods




Ask ChatGPT about the research

The SLAC Linear Collider has been colliding a polarized electron beam with an unpolarized positron beam at the Z^0 resonance for the SLD experiment since 1992. An electron beam polarization of close to 80% has been achieved for the experiment at luminosities up to 8x10^29 cm^-2 s^-1. This is the worlds first and only linear collider, and is a successful prototype for the next generation of high energy electron linear colliders. This paper discusses polarized beam operation for the SLC, and includes aspects of the polarized source, spin transport and polarimetry. Presented at the 12th International Symposium on High Energy Spin Physics held at Amsterdam, The Netherlands September 10-14, 1996.

rate research

Read More

The SLAC PES, developed in the early 1990s for the SLC, has been in continuous use since 1992, during which time it has undergone numerous upgrades. The upgrades include improved cathodes with their matching laser systems, modified activation techniques and better diagnostics. The source itself and its performance with these upgrades will be described with special attention given to recent high-intensity long-pulse operation for the E-158 fixed-target parity-violating experiment.
The Compact Linear Collider (CLIC) is an option for a future e+e- collider operating at centre-of-mass energies up to 3 TeV, providing sensitivity to a wide range of new physics phenomena and precision physics measurements at the energy frontier. This paper is the first comprehensive presentation of the Higgs physics reach of CLIC operating at three energy stages: sqrt(s) = 350 GeV, 1.4 TeV and 3 TeV. The initial stage of operation allows the study of Higgs boson production in Higgsstrahlung (e+e- -> ZH) and WW-fusion (e+e- -> Hnunu), resulting in precise measurements of the production cross sections, the Higgs total decay width Gamma_H, and model-independent determinations of the Higgs couplings. Operation at sqrt(s) > 1 TeV provides high-statistics samples of Higgs bosons produced through WW-fusion, enabling tight constraints on the Higgs boson couplings. Studies of the rarer processes e+e- -> ttH and e+e- -> HHnunu allow measurements of the top Yukawa coupling and the Higgs boson self-coupling. This paper presents detailed studies of the precision achievable with Higgs measurements at CLIC and describes the interpretation of these measurements in a global fit.
The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies: 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of ttH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.
In order to profit from the high granularity of the calorimeters proposed for the ILC that are suitable for the Particle Flow Approach, specialised clustering algorithms have to be developped. GARLIC is such an algorithm with the goal to find and identify pointing photons in the electromagnetic calorimeter. This would help to improve the energy resolution on the photon contribution in jets.
58 - M. Woods , , R. Erickson 2005
The SLAC Linac can deliver damped bunches with ILC parameters for bunch charge and bunch length to End Station A. A 10Hz beam at 28.5 GeV energy can be delivered there, parasitic with PEP-II operation. We plan to use this facility to test prototype components of the Beam Delivery System and Interaction Region. We discuss our plans for this ILC Test Facility and preparations for carrying out experiments related to collimator wakefields and energy spectrometers. We also plan an interaction region mockup to investigate effects from backgrounds and beam-induced electromagnetic interference.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا