Do you want to publish a course? Click here

Short popular review of quantum electromagnetodynamics

277   0   0.0 ( 0 )
 Added by Rainer Kuehne
 Publication date 2002
  fields Physics
and research's language is English
 Authors R. W. Kuhne




Ask ChatGPT about the research

The aim of this note is to give a short and popular review of the ideas which led to my model of magnetic monopoles (hep-ph/9708394) and my prediction of the second kind of electromagnetic radiation. I will also point out the many and far-reaching consequences if these magnetic photon rays would be confirmed.



rate research

Read More

53 - Rainer W. Kuhne 2002
Several years ago, I suggested a quantum field theory which has many attractive features. (1) It can explain the quantization of electric charge. (2) It describes symmetrized Maxwell equations. (3) It is manifestly covariant. (4) It describes local four-potentials. (5) It avoids the unphysical Dirac string. Here I will review the ideas which led to my model of magnetic monopoles including my prediction of the second kind of electromagnetic radiation. I will present also the mathematical formalism. Moreover I will suggest an experiment to verify the second kind of electromagnetic radiation and point out a possible observation of this radiation by August Kundt in 1885. Finally, I will list the many and far-reaching consequences, if this radiation will be confirmed by future experiments.
275 - Ion Nechita , Jordi Pillet 2020
We introduce SudoQ, a quantum version of the classical game Sudoku. Allowing the entries of the grid to be (non-commutative) projections instead of integers, the solution set of SudoQ puzzles can be much larger than in the classical (commutative) setting. We introduce and analyze a randomized algorithm for computing solutions of SudoQ puzzles. Finally, we state two important conjectures relating the quantum and the classical solutions of SudoQ puzzles, corroborated by analytical and numerical evidence.
Normalized correlation functions provide expedient means for determining the photon-number properties of light. These higher-order moments, also called the normalized factorial moments of photon number, can be utilized both in the fast state classification and in-depth state characterization. Further, non-classicality criteria have been derived based on their properties. Luckily, the measurement of the normalized higher-order moments is often loss-independent making their observation with lossy optical setups and imperfect detectors experimentally appealing. The normalized higher-order moments can for example be extracted from the photon-number distribution measured with a true photon-number-resolving detector or accessed directly via manifold coincidence counting in the spirit of the Hanbury Brown and Twiss experiment. Alternatively, they can be inferred via homodyne detection. Here, we provide an overview of different kind of state classification and characterization tasks that take use of normalized higher-order moments and consider different aspects in measuring them with free-traveling light.
In this paper, we review the current status of the phenomenological study of quarkonium production in high energy collisions. After a brief introduction of several important models and effective field theories for quarkonium production, we discuss the comparisons between theoretical predictions and experimental measurements.
134 - Kai Wu , Diqing Su , Renata Saha 2020
Magnetic particle spectroscopy (MPS), also called magnetization response spectroscopy, is a novel measurement tool derived from magnetic particle imaging (MPI). It can be interpreted as a zero-dimensional version of MPI scanner. MPS was primarily designed for characterizing superparamagnetic iron oxide nanoparticles (SPIONs) regarding their applicability for MPI. In recent years, it has evolved into an independent, versatile, highly sensitive, inexpensive platform for biological and biomedical assays, cell labeling and tracking, and blood analysis. MPS has also developed into an auxiliary tool for magnetic imaging and hyperthermia by providing high spatial and temporal mappings of temperature and viscosity. Furthermore, other MPS-based applications are being explored such as magnetic fingerprints for product tracking and identification in supply chains. There are a variety of novel MPS-based applications being reported and demonstrated by many groups. In this short review, we highlighted some of the representative applications based on MPS platform, thereby providing a roadmap of this technology and our insights for researchers in this area.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا