Do you want to publish a course? Click here

How high the temperature of a liquid be raised without boiling?

70   0   0.0 ( 0 )
 Added by Mala Das
 Publication date 2000
  fields Physics
and research's language is English




Ask ChatGPT about the research

How high the temperature of a liquid be raised beyond its boiling point without vaporizing (known as the limit of superheat) is an interesting subject of investigation. A new method of finding the limit of superheat of liquids is presented here. The superheated liquids are taken in the form of drops suspended in visco elastic gel. The nucleation is detected acoustically by a sensitive piezo-electric transducer, coupled to a multi channel scaler and the nucleation is observed as a funtion of time and with increase of temperature. The limit of superheat measured by the present method supersedes all other measurements and theoretical predictions in reaching closest to the critical temperature and warrants improved theoretical predictions.



rate research

Read More

We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitarity limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann gas at high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime, and short-range correlations of Fermi polarons at low temperatures $T$. In this regime, we observe a characteristic $T^2$ dependence of the spectral width, corresponding to the quasiparticle decay rate expected for a Fermi liquid. At high $T$, the spectral width decreases again towards the scattering rate of the classical, unitary Boltzmann gas, $propto T^{-1/2}$. In the transition region between the quantum degenerate and classical regime, the spectral width attains its maximum, on the scale of the Fermi energy, indicating the breakdown of a quasiparticle description. Density measurements in a harmonic trap directly reveal the majority dressing cloud surrounding the minority spins and yield the compressibility along with the effective mass of Fermi polarons.
An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubbles reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.
170 - P. R. Silva 2010
A modified vacuum energy density of the radiation field is evaluated, which leads to accepted prediction for the radius of the universe. The modification takes into account the existence of a new gauge boson which also can be used in order to determine the mass of the boson responsible for the weak decay of the muon.
We construct an idealized universe for didactic purposes. This universe is assumed to consist of absolute Euclidean space and to be filled with a classical medium which allows for sound waves. A known solution to the wave equation describing the dynamics of the medium is a standing spherical wave. Although this is a problem of classical mechanics, we demonstrate that the Lorentz transformation is required to generate a moving solution from the stationary one. Both solutions are here collectively referred to as spherons. These spherons exhibit properties which have analogues in the physical description of matter with rest mass, among them de Broglie like phase waves and at the same time relativistic effects such as contraction and a speed limit. This leads to a theory of special relativity by assuming the point of view of an observer made of such spheronic matter. The argument made here may thus be useful as a visualisation or didactic approach to the real universe, in which matter has wave-like properties and obeys the laws of special relativity.
95 - P. R. Silva 2010
A model is proposed such that quasi-particles (electrons or holes) residing in the CuO2 planes of cuprates may interact leading to metallic or superconducting behaviors. The metallic phase is obtained when the quasi-particles are treated as having classical kinetic energies and the superconducting phase occurs when the quasi-particles are taken as extremely relativistic objects. The interaction between both kinds of particles is provided by a force dependent-on-velocity. In the case of the superconducting behavior, the motion of apical oxygen ions provides the glue to establish the Cooper pair. The model furnishes explicit relations for the Fermi velocity, the perpendicular and the in-plane coherence lengths, the zero-temperature energy gap, the critical current density, the critical parallel and perpendicular magnetic fields. All these mentioned quantities are expressed in terms of fundamental physical constants as: charge and mass of the electron, light velocity in vacuum, Planck constant, electric permittivity of the vacuum. Numerical evaluation of these quantities show that their values are close those found for the superconducting YBaCuO, leading to think the model as being a possible scenario to explain superconductivity in cuprates.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا