Do you want to publish a course? Click here

Boiling a Unitary Fermi Liquid

92   0   0.0 ( 0 )
 Added by Julian Struck
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the thermal evolution of a highly spin-imbalanced, homogeneous Fermi gas with unitarity limited interactions, from a Fermi liquid of polarons at low temperatures to a classical Boltzmann gas at high temperatures. Radio-frequency spectroscopy gives access to the energy, lifetime, and short-range correlations of Fermi polarons at low temperatures $T$. In this regime, we observe a characteristic $T^2$ dependence of the spectral width, corresponding to the quasiparticle decay rate expected for a Fermi liquid. At high $T$, the spectral width decreases again towards the scattering rate of the classical, unitary Boltzmann gas, $propto T^{-1/2}$. In the transition region between the quantum degenerate and classical regime, the spectral width attains its maximum, on the scale of the Fermi energy, indicating the breakdown of a quasiparticle description. Density measurements in a harmonic trap directly reveal the majority dressing cloud surrounding the minority spins and yield the compressibility along with the effective mass of Fermi polarons.



rate research

Read More

Transport of strongly interacting fermions governs modern materials -- from the high-$T_c$ cuprates to bilayer graphene --, but also nuclear fission, the merging of neutron stars and the expansion of the early universe. Here we observe a universal quantum limit of diffusivity in a homogeneous, strongly interacting Fermi gas of atoms by studying sound propagation and its attenuation via the coupled transport of momentum and heat. In the normal state, the sound diffusivity ${D}$ monotonically decreases upon lowering the temperature $T$, in contrast to the diverging behavior of weakly interacting Fermi liquids. As the superfluid transition temperature is crossed, ${D}$ attains a universal value set by the ratio of Plancks constant ${h}$ and the particle mass ${m}$. This finding of quantum limited sound diffusivity informs theories of fermion transport, with relevance for hydrodynamic flow of electrons, neutrons and quarks.
Quantum many-body systems may defy thermalization even without disorder. Intriguingly, non-ergodicity may be caused by a fragmentation of the many-body Hilbert-space into dynamically disconnected subspaces. The tilted one-dimensional Fermi-Hubbard model was proposed as a platform to realize fragmented models perturbatively in the limit of large tilt. Here, we demonstrate the validity of this effective description for the transient dynamics using ultracold fermions. The effective analytic model allows for a detailed understanding of the emergent microscopic processes, which in our case exhibit a pronounced doublon-number dependence. We study this experimentally by tuning the doublon fraction in the initial state.
213 - Peng He , Yuzhu Jiang , Xiwen Guan 2014
Quantum criticality of strongly attractive Fermi gas with $SU(3)$ symmetry in one dimension is studied via the thermodynamic Bethe ansatz (TBA) equations.The phase transitions driven by the chemical potential $mu$, effective magnetic field $H_1$, $H_2$ (chemical potential biases) are analyzed at the quantum criticality. The phase diagram and critical fields are analytically determined by the thermodynamic Bethe ansatz equations in zero temperature limit. High accurate equations of state, scaling functions are also obtained analytically for the strong interacting gases. The dynamic exponent $z=2$ and correlation length exponent $ u=1/2$ read off the universal scaling form. It turns out that the quantum criticality of the three-component gases involves a sudden change of density of states of one cluster state, two or three cluster states. In general, this method can be adapted to deal with the quantum criticality of multi-component Fermi gases with $SU(N)$ symmetry.
The thermalization of isolated quantum many-body systems is deeply related to fundamental questions of quantum information theory. While integrable or many-body localized systems display non-ergodic behavior due to extensively many conserved quantities, recent theoretical studies have identified a rich variety of more exotic phenomena in between these two extreme limits. The tilted one-dimensional Fermi-Hubbard model, which is readily accessible in experiments with ultracold atoms, emerged as an intriguing playground to study non-ergodic behavior in a clean disorder-free system. While non-ergodic behavior was established theoretically in certain limiting cases, there is no complete understanding of the complex thermalization properties of this model. In this work, we experimentally study the relaxation of an initial charge-density wave and find a remarkably long-lived initial-state memory over a wide range of parameters. Our observations are well reproduced by numerical simulations of a clean system. Using analytical calculations we further provide a detailed microscopic understanding of this behavior, which can be attributed to emergent kinetic constraints.
We experimentally investigate the first-order correlation function of a trapped Fermi gas in the two-dimensional BEC-BCS crossover. We observe a transition to a low-temperature superfluid phase with algebraically decaying correlations. We show that the spatial coherence of the entire trapped system can be characterized by a single temperature-dependent exponent. We find the exponent at the transition to be constant over a wide range of interaction strengths across the crossover. This suggests that the phase transitions in both the bosonic regime and the strongly interacting crossover regime are of Berezinskii-Kosterlitz-Thouless-type and lie within the same universality class. On the bosonic side of the crossover, our data are well-described by Quantum Monte Carlo calculations for a Bose gas. In contrast, in the strongly interacting regime, we observe a superfluid phase which is significantly influenced by the fermionic nature of the constituent particles.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا