Do you want to publish a course? Click here

Medium effects in K^+ nucleus interaction from consistent analysis of integral and differential cross sections

52   0   0.0 ( 0 )
 Added by Jiri Mares
 Publication date 1996
  fields
and research's language is English




Ask ChatGPT about the research

Self consistency in the analysis of transmission measurements for K^+ on several nuclei in the momentum range of 500-700 MeV/c is achieved with a t_{eff}(rho)rho potential and new results are derived for total cross sections. The imaginary part of the t_{eff} amplitude is found to increase linearly with the average nuclear density in excess of a threshold value. This phenomenological density dependence of the K^+ nucleus optical potential also gives rise to good agreement with recent measurements of differential cross sections for elastic scattering of 715 MeV/c K^+ by Li^6 and C.



rate research

Read More

We present the results of our calculation which has been performed to study the nuclear effects in the quasielastic, inelastic and deep inelastic scattering of neutrinos(antineutrinos) from nuclear targets. These calculations are done in the local density approximation. We take into account the effect of Pauli blocking, Fermi motion, Coulomb effect, renormalization of weak transition strengths in the nuclear medium in the case of the quasielastic reaction. The inelastic reaction leading to production of pions is calculated in a $Delta $- dominance model taking into account the renormalization of $Delta$ properties in the nuclear medium and the final state interaction effects of the outgoing pions with the residual nucleus. We discuss the nuclear effects in the $F_{3}^{A}(x)$ structure function in the deep inelastic neutrino(antineutrino) reaction using a relativistic framework to describe the nucleon spectral function in the nucleus.
The 5-dimensional spin-0 form of the Kemmer-Duffin-Petiau (KDP) equation is used to calculate scattering observables [elastic differential cross sections ($dsigma/dOmega$), total cross sections ($sigma_{Tot}$), and reaction cross sections ($sigma_{Reac}$})] and to deduce $sigma_{Tot}$ and $sigma_{Reac}$ from transmission data for $K^+ + $ $^{6}$Li, $^{12}$C, $^{28}$Si, and $^{40}$Ca at several momenta in the range $488 - 714 MeV/c$. Realistic uncertainties are generated for the theoretical predictions. These errors, mainly due to uncertainties associated with the elementary $K^+ +$ nucleon amplitudes, are large, so that the disagreement that has been noted between experimental and theoretical $sigma_{Tot}$ and $sigma_{Reac}$ is not surprising. The results suggest that the $K^+ +$ nucleon amplitudes need to be much better determined before unconventional medium effects are invoked to explain the data.
Results for the $pi + N to Lambda, Sigma + K$ reactions in nuclear matter of Ref. nucl-th/0004011 are presented. To evaluate the in-medium modification of the reaction amplitude as a function of the baryonic density we introduce relativistic, mean-field potentials for the initial, final and intermediate mesonic and baryonic states in the resonance model. These vector and scalar potentials were calculated using the quark meson coupling model. Contrary to earlier work which has not allowed for the change of the cross section in medium, we find that the data for kaon production at SIS energies are consistent with a repulsive $K^+$-nucleus potential.
The feasibility of a model-independent extraction of the forward strong amplitude from elastic nuclear cross section data in the Coulomb-nuclear interference region is assessed for $pi$ and $K^+$ scattering at intermediate energies. Theoretically-generated data are analyzed to provide criteria for optimally designing experiments to measure these amplitudes, whose energy dependence (particularly that of the real parts) is needed for disentangling various sources of medium modifications of the projectile-nucleon interaction. The issues considered include determining the angular region over which to make the measurements, the role of the most forward angles measured, and the effects of statistical and systematic errors. We find that there is a region near the forward direction where Coulomb-nuclear interference allows reliable extraction of the strong forward amplitude for both pions and the $K^+$ from .3 to 1 GeV/c.
66 - Giampaolo Co 2006
The Random Phase Approximation theory is used to calculate the total cross sections of electron neutrinos on $^{12}$C nucleus. The role of the excitation of the discrete spectrum is discussed. A comparison with electron scattering and muon capture data is presented. The cross section of electron neutrinos coming from muon decay at rest is calculated.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا