Do you want to publish a course? Click here

Global Observations from PHOBOS

102   0   0.0 ( 0 )
 Added by Mark D. Baker
 Publication date 2002
  fields
and research's language is English
 Authors Mark D. Baker




Ask ChatGPT about the research

Particle production in Au+Au collisions has been measured in the PHOBOS experiment at RHIC for a range of collision energies. Three empirical observations have emerged from this dataset which require theoretical examination. First, there is clear evidence of limiting fragmentation. Namely, particle production in central Au+Au collisions, when expressed as $dN/deta$ ($eta equiv eta-y_{beam}$), becomes energy independent at high energy for a broad region of $eta$ around $eta=0$. This energy-independent region grows with energy, allowing only a limited region (if any) of longitudinal boost-invariance. Second, there is a striking similarity between particle production in e+e- and Au+Au collisions (scaled by the number of participating nucleon pairs). Both the total number of produced particles and the longitudinal distribution of produced particles are approximately the same in e+e- and in scaled Au+Au. This observation was not predicted and has not been explained. Finally, particle production has been found to scale approximately with the number of participating nucleon pairs for $N_{part}>65$. This scaling occurs both for the total multiplicity and for high $pT$ particles (3 $<pT<$ 4.5 GeV/c).



rate research

Read More

112 - D. J. Hofman 2007
This manuscript contains a summary of the latest physics results from PHOBOS, as reported at Quark Matter 2006. Highlights include the first measurement from PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of their possible origin, two-particle correlations, identified particle ratios, identified particle spectra and the latest results in global charged particle production.
94 - C. Roland , et al. 2001
PHOBOS is one of four experiments studying Au-Au collisions at RHIC. During the first running period RHIC provided Au+Au collisions at $sqrt{s_{_{NN}}}$ = 56 GeV and 130 GeV. The data collected during this period allowed us to study the energy and centrality dependence of particle production, the anisotropy of the final state azimuthal distribution and particle ratios at mid-rapidity.
The PHOBOS experiment is well positioned to obtain crucial information about relativistic heavy ion collisions at RHIC, combining a multiplicity counter with a multi-particle spectrometer. The multiplicity arrays will measure the charged particle multiplicity over the full solid angle. The spectrometer will be able to identify particles at mid-rapidity. The experiment is constructed almost exclusively of silicon pad detectors. Detectors of nine different types are configured in the multiplicity and vertex detector (22,000 channels) and two multi-particle spectrometers (120,000 channels). The overall layout of the experiment, testing of the silicon sensors and the performance of the detectors during the engineering run at RHIC in 1999 are discussed.
76 - K.Wozniak , et al. 2006
The PHOBOS experiment at the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory is studying interactions of heavy nuclei at the largest energies available in the laboratory. The high multiplicity of particles created in heavy ion collisions makes precise vertex reconstruction possible using information from a spectrometer and a specialized vertex detector with relatively small acceptances. For lower multiplicity events, a large acceptance, single layer multiplicity detector is used and special algorithms are developed to reconstruct the vertex, resulting in high efficiency at the expense of poorer resolution. The algorithms used in the PHOBOS experiment and their performance are presented.
164 - B.Alver 2006
We introduce an analysis method to measure elliptic flow (v_2) fluctuations using the PHOBOS detector for Au+Au collisions at sqrt(s) = 200 GeV. In this method, v_2 is determined event-by-event by a maximum likelihood fit. The non-statistical fluctuations are determined by unfolding the contribution of statistical fluctuations and detector effects using Monte Carlo simulations(MC). Application of this method to measure dynamical fluctuations embedded in special MC are presented. It is shown that the input fluctuations are reconstructed successfully for <v_2> >= 0.03.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا