Do you want to publish a course? Click here

Observation of discrete vortex solitons in optically-induced photonic lattices

84   0   0.0 ( 0 )
 Publication date 2003
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the frst experimental observation of discrete vortex solitons in two-dimensional optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.



rate research

Read More

We investigate the interaction between a light beam and a two-dimensional photonic lattice that is photo-induced in a photorefractive crystal using partially coherent light. We demonstrate that this interaction process is associated with a host of new phenomena including lattice dislocation, lattice deformation, and creation of structures akin to optical polarons. In addition, two-dimensional discrete solitons are realized in such partially coherent photonic lattices.
We prove existence of discrete solitons in infinite parity-time (PT-) symmetric lattices by means of analytical continuation from the anticontinuum limit. The energy balance between dissipation and gain implies that in the anticontinuum limit the solitons are constructed from elementary PT-symmetric blocks such as dimers, quadrimers, or more general oligomers. We consider in detail a chain of coupled dimers, analyze bifurcations of discrete solitons from the anticontinuum limit and show that the solitons are stable in a sufficiently large region of the lattice parameters. The generalization of the approach is illustrated on two examples of networks of quadrimers, for which stable discrete solitons are also found.
We study the properties of two-color nonlinear localized modes which may exist at the interfaces separating two different periodic photonic lattices in quadratic media, focussing on the impact of phase mismatch of the photonic lattices on the properties, stability, and threshold power requirements for the generation of interface localized modes. We employ both an effective discrete model and continuum model with periodic potential and find good qualitative agreement between both models. Dynamics excitation of interface modes shows that, a two-color interface twisted mode splits into two beams with different escaping angles and carrying different energies when entering a uniform medium from the quadratic photonic lattice. The output position and energy contents of each two-color interface solitons can be controlled by judicious tuning of
We study coupled unstaggered-staggered soliton pairs emergent from a system of two coupled discrete nonlinear Schr{o}dinger (DNLS) equations with the self-attractive on-site self-phase-modulation nonlinearity, coupled by the repulsive cross-phase-modulation interaction, on 1D and 2D lattice domains. These mixed modes are of a symbiotic type, as each component in isolation may only carry ordinary unstaggered solitons. While most work on DNLS systems addressed symmetric on-site-centered fundamental solitons, these models give rise to a variety of other excited states, which may also be stable. The simplest among them are antisymmetric states in the form of discrete twisted solitons, which have no counterparts in the continuum limit. In the extension to 2D lattice domains, a natural counterpart of the twisted states are vortical solitons. We first introduce a variational approximation (VA) for the solitons, and then correct it numerically to construct exact stationary solutions, which are then used as initial conditions for simulations to check if the stationary states persist under time evolution. Two-component solutions obtained include (i) 1D fundamental-twisted and twisted-twisted soliton pairs, (ii) 2D fundamental-fundamental soliton pairs, and (iii) 2D vortical-vortical soliton pairs. We also highlight a variety of other transient dynamical regimes, such as breathers and amplitude death. The findings apply to modeling binary Bose-Einstein condensates, loaded in a deep lattice potential, with identical or different atomic masses of the two components, and arrays of bimodal optical waveguides.
We investigate numerically and experimentally the influence of coupling disorder on the self-trapping dynamics in nonlinear one-dimensional optical waveguide arrays. The existence of a lower and upper bound of the effective average propagation constant allows for a generalized definition of the threshold power for the onset of soliton localization. When compared to perfectly ordered systems, this threshold is found to decrease in the presence of coupling disorder.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا