Do you want to publish a course? Click here

Unstaggered-staggered solitons on one- and two-dimensional two-component discrete nonlinear Schr{o}dinger lattices

268   0   0.0 ( 0 )
 Added by Robert Van Gorder
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study coupled unstaggered-staggered soliton pairs emergent from a system of two coupled discrete nonlinear Schr{o}dinger (DNLS) equations with the self-attractive on-site self-phase-modulation nonlinearity, coupled by the repulsive cross-phase-modulation interaction, on 1D and 2D lattice domains. These mixed modes are of a symbiotic type, as each component in isolation may only carry ordinary unstaggered solitons. While most work on DNLS systems addressed symmetric on-site-centered fundamental solitons, these models give rise to a variety of other excited states, which may also be stable. The simplest among them are antisymmetric states in the form of discrete twisted solitons, which have no counterparts in the continuum limit. In the extension to 2D lattice domains, a natural counterpart of the twisted states are vortical solitons. We first introduce a variational approximation (VA) for the solitons, and then correct it numerically to construct exact stationary solutions, which are then used as initial conditions for simulations to check if the stationary states persist under time evolution. Two-component solutions obtained include (i) 1D fundamental-twisted and twisted-twisted soliton pairs, (ii) 2D fundamental-fundamental soliton pairs, and (iii) 2D vortical-vortical soliton pairs. We also highlight a variety of other transient dynamical regimes, such as breathers and amplitude death. The findings apply to modeling binary Bose-Einstein condensates, loaded in a deep lattice potential, with identical or different atomic masses of the two components, and arrays of bimodal optical waveguides.



rate research

Read More

In this paper we analyze the existence, stability, dynamical formation and mobility properties of localized solutions in a one-dimensional system described by the discrete nonlinear Schr{o}dinger equation with a linear point defect. We consider both attractive and repulsive defects in a focusing lattice. Among our main findings are: a) the destabilization of the on--site mode centered at the defect in the repulsive case; b) the disappearance of localized modes in the vicinity of the defect due to saddle-node bifurcations for sufficiently strong defects of either type; c) the decrease of the amplitude formation threshold for attractive and its increase for repulsive defects; and d) the detailed elucidation as a function of initial speed and defect strength of the different regimes (trapping, trapping and reflection, pure reflection and pure transmission) of interaction of a moving localized mode with the defect.
Asymptotic reductions of a defocusing nonlocal nonlinear Schr{o}dinger model in $(3+1)$-dimensions, in both Cartesian and cylindrical geometry, are presented. First, at an intermediate stage, a Boussinesq equation is derived, and then its far-field, in the form of a variety of Kadomtsev-Petviashvilli (KP) equations for right- and left-going waves, is found. KP models includ
We consider a two-component one-dimensional model of gap solitons (GSs), which is based on two nonlinear Schrodinger equations, coupled by repulsive XPM (cross-phase-modulation) terms, in the absence of the SPM (self-phase-modulation) nonlinearity. The equations include a periodic potential acting on both components, thus giving rise to GSs of the symbiotic type, which exist solely due to the repulsive interaction between the two components. The model may be implemented for holographic solitons in optics, and in binary bosonic or fermionic gases trapped in the optical lattice. Fundamental symbiotic GSs are constructed, and their stability is investigated, in the first two finite bandgaps of the underlying spectrum. Symmetric solitons are destabilized, including their entire family in the second bandgap, by symmetry-breaking perturbations above a critical value of the total power. Asymmetric solitons of intra-gap and inter-gap types are studied too, with the propagation constants of the two components falling into the same or different bandgaps, respectively. The increase of the asymmetry between the components leads to shrinkage of the stability areas of the GSs. Inter-gap GSs are stable only in a strongly asymmetric form, in which the first-bandgap component is a dominating one. Intra-gap solitons are unstable in the second bandgap. Unstable two-component GSs are transformed into persistent breathers. In addition to systematic numerical considerations, analytical results are obtained by means of an extended (tailed) Thomas-Fermi approximation (TFA).
We present a case demonstrating the connection between supersymmetric quantum mechanics (SUSY--QM), reflectionless scattering, and soliton solutions of integrable partial differential equations. We show that the members of a class of reflectionless Hamiltonians, namely, Akulins Hamiltonians, are connected via supersymmetric chains to a potential-free Hamiltonian, explaining their reflectionless nature. While the reflectionless property in question has been mentioned in the literature for over two decades, the enabling algebraic mechanism was previously unknown. Our results indicate that the multi-solition solutions of the sine-Gordon and nonlinear Schr{o}dinger equations can be systematically generated via the supersymmetric chains connecting Akulins Hamiltonians. Our findings also explain a well-known but little-understood effect in laser physics: when a two-level atom, initially in the ground state, is subjected to a laser pulse of the form $V(t) = (nhbar/tau)/cosh(t/tau)$, with $n$ being an integer and $tau$ being the pulse duration, it remains in the ground state after the pulse has been applied, for {it any} choice of the laser detuning.
Principal component analysis (PCA) has achieved great success in unsupervised learning by identifying covariance correlations among features. If the data collection fails to capture the covariance information, PCA will not be able to discover meaningful modes. In particular, PCA will fail the spatial Gaussian Process (GP) model in the undersampling regime, i.e. the averaged distance of neighboring anchor points (spatial features) is greater than the correlation length of GP. Counterintuitively, by drawing the connection between PCA and Schrodinger equation, we can not only attack the undersampling challenge but also compute in an efficient and decoupled way with the proposed algorithm called Schrodinger PCA. Our algorithm only requires variances of features and estimated correlation length as input, constructs the corresponding Schrodinger equation, and solves it to obtain the energy eigenstates, which coincide with principal components. We will also establish the connection of our algorithm to the model reduction techniques in the partial differential equation (PDE) community, where the steady-state Schrodinger operator is identified as a second-order approximation to the covariance function. Numerical experiments are implemented to testify the validity and efficiency of the proposed algorithm, showing its potential for unsupervised learning tasks on general graphs and manifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا