Do you want to publish a course? Click here

Interface solitons in quadratically nonlinear photonic lattices

145   0   0.0 ( 0 )
 Added by Mario I. Molina
 Publication date 2009
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the properties of two-color nonlinear localized modes which may exist at the interfaces separating two different periodic photonic lattices in quadratic media, focussing on the impact of phase mismatch of the photonic lattices on the properties, stability, and threshold power requirements for the generation of interface localized modes. We employ both an effective discrete model and continuum model with periodic potential and find good qualitative agreement between both models. Dynamics excitation of interface modes shows that, a two-color interface twisted mode splits into two beams with different escaping angles and carrying different energies when entering a uniform medium from the quadratic photonic lattice. The output position and energy contents of each two-color interface solitons can be controlled by judicious tuning of



rate research

Read More

We report on the frst experimental observation of discrete vortex solitons in two-dimensional optically-induced photonic lattices. We demonstrate strong stabilization of an optical vortex by the lattice in a self-focusing nonlinear medium and study the generation of the discrete vortices from a broad class of singular beams.
We investigate numerically and experimentally the influence of coupling disorder on the self-trapping dynamics in nonlinear one-dimensional optical waveguide arrays. The existence of a lower and upper bound of the effective average propagation constant allows for a generalized definition of the threshold power for the onset of soliton localization. When compared to perfectly ordered systems, this threshold is found to decrease in the presence of coupling disorder.
We investigate the interaction between a light beam and a two-dimensional photonic lattice that is photo-induced in a photorefractive crystal using partially coherent light. We demonstrate that this interaction process is associated with a host of new phenomena including lattice dislocation, lattice deformation, and creation of structures akin to optical polarons. In addition, two-dimensional discrete solitons are realized in such partially coherent photonic lattices.
In this paper we analyze the existence, stability, dynamical formation and mobility properties of localized solutions in a one-dimensional system described by the discrete nonlinear Schr{o}dinger equation with a linear point defect. We consider both attractive and repulsive defects in a focusing lattice. Among our main findings are: a) the destabilization of the on--site mode centered at the defect in the repulsive case; b) the disappearance of localized modes in the vicinity of the defect due to saddle-node bifurcations for sufficiently strong defects of either type; c) the decrease of the amplitude formation threshold for attractive and its increase for repulsive defects; and d) the detailed elucidation as a function of initial speed and defect strength of the different regimes (trapping, trapping and reflection, pure reflection and pure transmission) of interaction of a moving localized mode with the defect.
We prove existence of discrete solitons in infinite parity-time (PT-) symmetric lattices by means of analytical continuation from the anticontinuum limit. The energy balance between dissipation and gain implies that in the anticontinuum limit the solitons are constructed from elementary PT-symmetric blocks such as dimers, quadrimers, or more general oligomers. We consider in detail a chain of coupled dimers, analyze bifurcations of discrete solitons from the anticontinuum limit and show that the solitons are stable in a sufficiently large region of the lattice parameters. The generalization of the approach is illustrated on two examples of networks of quadrimers, for which stable discrete solitons are also found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا