Do you want to publish a course? Click here

Direct Chaotic Communication in Microwave Band

273   0   0.0 ( 0 )
 Added by Yuri Andreyev
 Publication date 2001
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss the concept of Direct Chaotic Communication (DCC). The scheme is based on the following ideas: (1) the chaotic source generates chaotic oscillations directly in the specified microwave band; (2) information component is input by means of formation of the appropriate stream of chaotic radio pulses; (3) envelope detection is used. The principle of communication scheme is confirmed experimentally in microwave band. The transmission rates of 3.34, 10.0 and up to 70.0 Mbps are demonstrated. his only looks like the abstract.



rate research

Read More

88 - C. Dembowski 2002
The spectral properties of a two-dimensional microwave billiard showing threefold symmetry have been studied with a new experimental technique. This method is based on the behavior of the eigenmodes under variation of a phase shift between two input channels, which strongly depends on the symmetries of the eigenfunctions. Thereby a complete set of 108 Kramers doublets has been identified by a simple and purely experimental method. This set clearly shows Gaussian unitary ensemble statistics, although the system is time-reversal invariant.
94 - C. Dembowski 2002
We have measured resonance spectra in a superconducting microwave cavity with the shape of a three-dimensional generalized Bunimovich stadium billiard and analyzed their spectral fluctuation properties. The experimental length spectrum exhibits contributions from periodic orbits of non-generic modes and from unstable periodic orbit of the underlying classical system. It is well reproduced by our theoretical calculations based on the trace formula derived by Balian and Duplantier for chaotic electromagnetic cavities.
138 - Hui-Ping Yin , Hai-Peng Ren 2021
To retrieve the information from the serious distorted received signal is the key challenge of communication signal processing. The chaotic baseband communication promises theoretically to eliminate the inter-symbol interference (ISI), however, it needs complicated calculation, if it is not impossible. In this paper, a genetic algorithm support vector machine (GA-SVM) based symbol detection method is proposed for chaotic baseband wireless communication system (CBWCS), by this way, treating the problem from a different viewpoint, the symbol decoding process is converted to be a binary classification through GA-SVM model. A trained GA-SVM model is used to decode the symbols directly at the receiver, so as to improve the bit error rate (BER) performance of the CBWCS and simplify the symbol detection process by removing the channel identification and the threshold calculation process as compared to that using the calculated threshold to decode symbol in the traditional methods. The simulation results show that the proposed method has better BER performance in both the static and time-varying wireless channels. The experimental results, based on the wireless open-access research platform, indicate that the BER of the proposed GA-SVM based symbol detection approach is superior to the other counterparts under a practical wireless multipath channel.
Two deterministic models for Brownian motion are investigated by means of numerical simulations and kinetic theory arguments. The first model consists of a heavy hard disk immersed in a rarefied gas of smaller and lighter hard disks acting as a thermal bath. The second is the same except for the shape of the particles, which is now square. The basic difference of these two systems lies in the interaction: hard core elastic collisions make the dynamics of the disks chaotic whereas that of squares is not. Remarkably, this difference is not reflected in the transport properties of the two systems: simulations show that the diffusion coefficients, velocity correlations and response functions of the heavy impurity are in agreement with kinetic theory for both the chaotic and the non-chaotic model. The relaxation to equilibrium, however, is very sensitive to the kind of interaction. These observations are used to reconsider and discuss some issues connected to chaos, statistical mechanics and diffusion.
The stationary distributions of sums of positions of trajectories generated by the logistic map have been found to follow a basic renormalization group (RG) structure: a nontrivial fixed-point multi-scale distribution at the period-doubling onset of chaos and a Gaussian trivial fixed-point distribution for all chaotic attractors. Here we describe in detail the crossover distributions that can be generated at chaotic band-splitting points that mediate between the aforementioned fixed-point distributions. Self affinity in the chaotic region imprints scaling features to the crossover distributions along the sequence of band splitting points. The trajectories that give rise to these distributions are governed first by the sequential formation of phase-space gaps when, initially uniformly-distributed, sets of trajectories evolve towards the chaotic band attractors. Subsequently, the summation of positions of trajectories already within the chaotic bands closes those gaps. The possible shapes of the resultant distributions depend crucially on the disposal of sets of early positions in the sums and the stoppage of the number of terms retained in them.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا