Do you want to publish a course? Click here

Direct Symbol Decoding using GA-SVM in Chaotic Baseband Wireless Communication System

139   0   0.0 ( 0 )
 Added by Hai-Peng Ren
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

To retrieve the information from the serious distorted received signal is the key challenge of communication signal processing. The chaotic baseband communication promises theoretically to eliminate the inter-symbol interference (ISI), however, it needs complicated calculation, if it is not impossible. In this paper, a genetic algorithm support vector machine (GA-SVM) based symbol detection method is proposed for chaotic baseband wireless communication system (CBWCS), by this way, treating the problem from a different viewpoint, the symbol decoding process is converted to be a binary classification through GA-SVM model. A trained GA-SVM model is used to decode the symbols directly at the receiver, so as to improve the bit error rate (BER) performance of the CBWCS and simplify the symbol detection process by removing the channel identification and the threshold calculation process as compared to that using the calculated threshold to decode symbol in the traditional methods. The simulation results show that the proposed method has better BER performance in both the static and time-varying wireless channels. The experimental results, based on the wireless open-access research platform, indicate that the BER of the proposed GA-SVM based symbol detection approach is superior to the other counterparts under a practical wireless multipath channel.



rate research

Read More

In some Internet of Things (IoT) applications, multi-path propagation is a main constraint of communication channel. Recently, the chaotic baseband wireless communication system (CBWCS) is promising to eliminate the inter-symbol interference (ISI) caused by multipath propagation. However, the current technique is only capable of removing the partial effect of ISI, due to only past decoded bits are available for the suboptimal decoding threshold calculation. However, the future transmitting bits also contribute to the threshold. The unavailable future information bits needed by the optimal decoding threshold are an obstacle to further improve the bit error rate (BER) performance. Different from the previous method using echo state network (ESN) to predict one future information bit, the proposed method in this paper predicts the optimal threshold directly using ESN. The proposed ESN-based threshold prediction method simplifies the symbol decoding operation by removing the threshold calculation from the transmitting symbols and channel information, which achieves better BER performance as compared to the previous method. The reason for this superior result lies in two folds, first, the proposed ESN is capable of using more future symbols information conveyed by the ESN input to get more accurate threshold; second, the proposed method here does not need to estimate the channel information using Least Square method, which avoids the extra error caused by inaccurate channel information estimation. By this way, the calculation complexity is decreased as compared to the previous method. Simulation results and experiment based on a wireless open-access research platform under a practical wireless channel, show the effectiveness and superiority of the proposed method.
Some new properties of the chaotic signal have been implemented in communication system applications recently. However, due to the broadband property of the chaotic signal, it is very difficult for a practical transducer or antenna to convert such a broadband signal into a signal that would be suitable for practical band-limited wireless channel. Thus, the use of chaos property to improve the performance of conventional communication system without changing the system configuration becomes a critical issue in communication with chaos. In this paper, chaotic baseband waveform generated by a chaotic shaping filter is used to show that this difficulty can be overcome. The generated continuous-time chaotic waveform is proven to be topologically conjugate to a symbolic sequence, allowing the encoding of arbitrary information sequence into the chaotic waveform. A finite impulse response filter is used to replace the impulse control in order to encode information into the chaotic signal, simplifying the algorithm for high speed communication. A wireless communication system is being proposed using the chaotic signal as the baseband waveform, which is compatible with the general wireless communication platform. The matched filter and decoding method, using chaos properties, enhance the communication system performance. The Bit Error Rate (BER) and computational complexity performances of the proposed wireless communication system are analyzed and compared with the conventional wireless systems. The results show that the proposed chaotic baseband waveform of our wireless communication method has better BER performance in both the static and time-varying wireless channels. The experimental results, based on the commonly-used wireless open-access research platform, show that the BER of the proposed method is superior to the conventional method under a practical wireless multipath channel.
We discuss the concept of Direct Chaotic Communication (DCC). The scheme is based on the following ideas: (1) the chaotic source generates chaotic oscillations directly in the specified microwave band; (2) information component is input by means of formation of the appropriate stream of chaotic radio pulses; (3) envelope detection is used. The principle of communication scheme is confirmed experimentally in microwave band. The transmission rates of 3.34, 10.0 and up to 70.0 Mbps are demonstrated. his only looks like the abstract.
260 - Rang Liu , Ming Li , Qian Liu 2021
Dual-functional radar-communication (DFRC) systems can simultaneously perform both radar and communication functionalities using the same hardware platform and spectrum resource. In this paper, we consider multi-input multi-output (MIMO) DFRC systems and focus on transmit beamforming designs to provide both radar sensing and multi-user communications. Unlike conventional block-level precoding techniques, we propose to use the recently emerged symbol-level precoding approach in DFRC systems, which provides additional degrees of freedom (DoFs) that guarantee preferable instantaneous transmit beampatterns for radar sensing and achieve better communication performance. In particular, the squared error between the designed and desired beampatterns is minimized subject to the quality-of-service (QoS) requirements of the communication users and the constant-modulus power constraint. Two efficient algorithms are developed to solve this non-convex problem on both the Euclidean and Riemannian spaces. The first algorithm employs penalty dual decomposition (PDD), majorization-minimization (MM), and block coordinate descent (BCD) methods to convert the original optimization problem into two solvable sub-problems, and iteratively solves them using efficient algorithms. The second algorithm provides a much faster solution at the price of a slight performance loss, first transforming the original problem into Riemannian space, and then utilizing the augmented Lagrangian method (ALM) to obtain an unconstrained problem that is subsequently solved via a Riemannian Broyden-Fletcher-Goldfarb-Shanno (RBFGS) algorithm. Extensive simulations verify the distinct advantages of the proposed symbol-level precoding designs in both radar sensing and multi-user communications.
We consider unmanned aerial vehicle (UAV)-assisted wireless communication employing UAVs as relay nodes to increase the throughput between a pair of transmitter and receiver. We focus on developing effective methods to position the UAV(s) in the sky in the presence of a major source of interference, the existence of which makes the problem non-trivial. First, we consider utilizing a single UAV, for which we develop a theoretical framework to determine its optimal position aiming to maximize the SIR of the system. To this end, we investigate the problem for three practical scenarios, in which the position of the UAV is: (i) vertically fixed, horizontally adjustable; (ii) horizontally fixed, vertically adjustable; (iii) both horizontally and vertically adjustable. Afterward, we consider employing multiple UAVs, for which we propose a cost-effective method that simultaneously minimizes the number of required UAVs and determines their optimal positions so as to guarantee a certain SIR of the system. We further develop a distributed placement algorithm, which can increase the SIR of the system given an arbitrary number of UAVs. Numerical simulations are provided to evaluate the performance of our proposed methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا