Do you want to publish a course? Click here

Arakelov inequalities and the uniformization of certain rigid Shimura varieties

119   0   0.0 ( 0 )
 Added by Eckart Viehweg
 Publication date 2005
  fields
and research's language is English




Ask ChatGPT about the research

Let Y be a non-singular projective manifold with an ample canonical sheaf, and let V be a rational variation of Hodge structures of weight one on Y with Higgs bundle E(1,0) + E(0,1), coming from a family of Abelian varieties. If Y is a curve the Arakelov inequality says that the difference of the slope of E(1,0) and the one of E(0,1) is is smaller than or equal to the degree of the canonical sheaf. We prove a similar inequality in the higher dimensional case. If the latter is an equality, as well as the Bogomolov inequality for E(1,0) or for E(0,1), one hopes that Y is a Shimura variety, and V a uniformizing variation of Hodge structures. This is verified, in case the universal covering of Y does not contain factors of rank >1. Part of the results extend to variations of Hodge structures over quasi-projective manifolds. The revised version corrects several mistakes and ambiguities, pointed out by the referee. Following suggestions of the referee the presentation of the results was improved.



rate research

Read More

145 - Sophie Morel 2018
The goal of this paper is to calculate the trace of the composition of a Hecke correspondence and a (high enough) power of the Frobenius at a good place on the intersection cohomology of the Satake-Baily-Borel compactification of certain Shimura varieties, to stabilize the result for Shimura varieties associated to unitary groups over $mathbb{Q}$ and to give applications of this calculations using base change from these unitary groups to $GL_n$. ----- Le but de ce texte est de calculer la trace dune correspondance de Hecke composee avec une puissance (assez grande) du Frobenius en une bonne place sur la cohomologie dintersection de la compactification de Satake-Baily-Borel de certaines varietes de Shimura, de stabiliser le resultat obtenu pour les varietes de Shimura associees aux groupes unitaires sur $mathbb{Q}$, et de donner des applications de ces calculs en utilisant le changement de base de ces groupes unitaires a $GL_n$.
In this paper we study the $mathbb{C}^*$-fixed points in moduli spaces of Higgs bundles over a compact Riemann surface for a complex semisimple Lie group and its real forms. These fixed points are called Hodge bundles and correspond to complex variations of Hodge structure. We introduce a topological invariant for Hodge bundles that generalizes the Toledo invariant appearing for Hermitian Lie groups. A main result of this paper is a bound on this invariant which generalizes both the Milnor-Wood inequality of the Hermitian case and the Arakelov inequalities of classical variations of Hodge structure. When the generalized Toledo invariant is maximal, we establish rigidity results for the associated variations of Hodge structure which generalize known rigidity results for maximal Higgs bundles and their associated maximal representations in the Hermitian case.
89 - Xinwen Zhu 2018
We survey some recent work on the geometric Satake of p-adic groups and its applications to some arithmetic problems of Shimura varieties. We reformulate a few constructions appeared in the previous works more conceptually.
173 - Thomas J. Haines 2013
We elaborate the theory of the stable Bernstein center of a $p$-adic group $G$, and apply it to state a general conjecture on test functions for Shimura varieties due to the author and R. Kottwitz. This conjecture provides a framework by which one might pursue the Langlands-Kottwitz method in a very general situation: not necessarily PEL Shimura varieties with arbitrary level structure at $p$. We give a concrete reinterpretation of the test function conjecture in the context of parahoric level structure. We also use the stable Bernstein center to formulate some of the transfer conjectures (the fundamental lemmas) that would be needed if one attempts to use the test function conjecture to express the local Hasse-Weil zeta function of a Shimura variety in terms of automorphic $L$-functions.
Consider a family f:A --> U of g-dimensional abelian varieties over a quasiprojective manifold U. Suppose that the induced map from U to the moduli scheme of polarized abelian varieties is generically finite and that there is a projective manifold Y, containing U as the complement of a normal crossing divisor S, such that the sheaf of logarithmic one forms is nef and that its determinant is ample with respect to U. We characterize whether $U$ is a Shimura variety by numerical data attached to the variation of Hodge structures, rather than by properties of the map from U to the moduli scheme or by the existence of CM points. More precisely, we show that U is a Shimura variety, if and only if two conditions hold. First, each irreducible local subsystem V of the complex weight one variation of Hodge structures is either unitary or satisfies the Arakelov equality. Secondly, for each factor M in the universal cover of U whose tangent bundle behaves like the one of a complex ball, an iterated Kodaira-Spencer map associated with V has minimal possible length in the direction of M.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا