Do you want to publish a course? Click here

The stable Bernstein center and test functions for Shimura varieties

164   0   0.0 ( 0 )
 Added by Thomas J. Haines
 Publication date 2013
  fields
and research's language is English




Ask ChatGPT about the research

We elaborate the theory of the stable Bernstein center of a $p$-adic group $G$, and apply it to state a general conjecture on test functions for Shimura varieties due to the author and R. Kottwitz. This conjecture provides a framework by which one might pursue the Langlands-Kottwitz method in a very general situation: not necessarily PEL Shimura varieties with arbitrary level structure at $p$. We give a concrete reinterpretation of the test function conjecture in the context of parahoric level structure. We also use the stable Bernstein center to formulate some of the transfer conjectures (the fundamental lemmas) that would be needed if one attempts to use the test function conjecture to express the local Hasse-Weil zeta function of a Shimura variety in terms of automorphic $L$-functions.



rate research

Read More

89 - Xinwen Zhu 2018
We survey some recent work on the geometric Satake of p-adic groups and its applications to some arithmetic problems of Shimura varieties. We reformulate a few constructions appeared in the previous works more conceptually.
275 - Yichao Tian , Liang Xiao 2013
Let $F$ be a totally real field in which $p$ is unramified. We study the Goren-Oort stratification of the special fibers of quaternionic Shimura varieties over a place above $p$. We show that each stratum is a $(mathbb{P}^1)^N$-bundle over other quaternionic Shimura varieties (for some appropriate $N$).
74 - Qijun Yan 2021
Let $S$ be the special fibre of a Shimura variety of Hodge type, with good reduction at a place above $p$. We give an alternative construction of the zip period map for $S$, which is used to define the Ekedahl-Oort strata of $S$. The method employed is local, $p$-adic, and group-theoretic in nature.
We prove the test function conjecture of Kottwitz and the first named author for local models of Shimura varieties with parahoric level structure, and their analogues in equal characteristic.
139 - Sophie Morel 2018
The goal of this paper is to calculate the trace of the composition of a Hecke correspondence and a (high enough) power of the Frobenius at a good place on the intersection cohomology of the Satake-Baily-Borel compactification of certain Shimura varieties, to stabilize the result for Shimura varieties associated to unitary groups over $mathbb{Q}$ and to give applications of this calculations using base change from these unitary groups to $GL_n$. ----- Le but de ce texte est de calculer la trace dune correspondance de Hecke composee avec une puissance (assez grande) du Frobenius en une bonne place sur la cohomologie dintersection de la compactification de Satake-Baily-Borel de certaines varietes de Shimura, de stabiliser le resultat obtenu pour les varietes de Shimura associees aux groupes unitaires sur $mathbb{Q}$, et de donner des applications de ces calculs en utilisant le changement de base de ces groupes unitaires a $GL_n$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا