Do you want to publish a course? Click here

The Chronological Operator Algebra and Formal Solutions of Differential Equations

62   0   0.0 ( 0 )
 Added by Yrii Kosovtsov
 Publication date 2004
  fields Physics
and research's language is English




Ask ChatGPT about the research

The aim of this paper is twofold. First, we obtain the explicit exact formal solutions of differential equations of different types in the form with Dyson chronological operator exponents. This allows us to deal directly with the solutions to the equations rather than the equations themselves. Second, we consider in detail the algebraic properties of chronological operators, yielding an extensive family of operator identities. The main advantage of the approach is to handle the formal solutions at least as well as ordinary functions. We examine from a general standpoint linear and non-linear ODEs of any order, systems of ODEs, linear operator ODEs, linear PDEs and systems of linear PDEs for one unknown function. The methods and techniques involved are demonstrated on examples from important differential equations of mathematical physics.



rate research

Read More

150 - Dimitry Leites 2019
1) The differential equation considered in terms of exterior differential forms, as E.Cartan did, singles out a differential ideal in the supercommutative superalgebra of differential forms, hence an affine supervariety. In view of this observation, it is evident that every differential equation has a supersymmetry (perhaps trivial). Superymmetries of which (systems of) classical differential equations are missed yet? 2) Why criteria of formal integrability of differential equations are never used in practice?
250 - Wen-an Yong 2007
This paper presents an observation that under reasonable conditions, many partial differential equations from mathematical physics possess three structural properties. One of them can be understand as a variant of the celebrated Onsager reciprocal relation in Modern Thermodynamics. It displays a direct relation of irreversible processes to the entropy change. We show that the properties imply various entropy dissipation conditions for hyperbolic relaxation problems. As an application of the observation, we propose an approximation method to solve relaxation problems. Moreover, the observation is interpreted physically and verified with eight (sets of) systems from different fields.
We survey the theory of attractors of nonlinear Hamiltonian partial differential equations since its appearance in 1990. These are results on global attraction to stationary states, to solitons and to stationary orbits, on adiabatic effective dynamics of solitons and their asymptotic stability. Results of numerical simulation are given. The obtained results allow us to formulate a new general conjecture on attractors of $G$ -invariant nonlinear Hamiltonian partial differential equations. This conjecture suggests a novel dynamical interpretation of basic quantum phenomena: Bohrs transitions between quantum stationary states, wave-particle duality and probabilistic interpretation.
110 - W. Galleas 2015
This letter is concerned with the analysis of the six-vertex model with domain-wall boundaries in terms of partial differential equations (PDEs). The models partition function is shown to obey a system of PDEs resembling the celebrated Knizhnik-Zamolodchikov equation. The analysis of our PDEs naturally produces a family of novel determinant representations for the models partition function.
The formalism of SUSYQM (SUperSYmmetric Quantum Mechanics) is properly modified in such a way to be suitable for the description and the solution of a classical maximally superintegrable Hamiltonian System, the so-called Taub-Nut system, associated with the Hamiltonian: $$ mathcal{H}_eta ({mathbf{q}}, {mathbf{p}}) = mathcal{T}_eta ({mathbf{q}}, {mathbf{p}}) + mathcal{U}_eta({mathbf{q}}) = frac{|{mathbf{q}}| {mathbf{p}}^2}{2m(eta + |{mathbf{q}}|)} - frac{k}{eta + |{mathbf{q}}|} quad (k>0, eta>0) , .$$ In full agreement with the results recently derived by A. Ballesteros et al. for the quantum case, we show that the classical Taub-Nut system shares a number of essential features with the Kepler system, that is just its Euclidean version arising in the limit $eta to 0$, and for which a SUSYQM approach has been recently introduced by S. Kuru and J. Negro. In particular, for positive $eta$ and negative energy the motion is always periodic; it turns out that the period depends upon $ eta$ and goes to the Euclidean value as $eta to 0$. Moreover, the maximal superintegrability is preserved by the $eta$-deformation, due to the existence of a larger symmetry group related to an $eta$-deformed Runge-Lenz vector, which ensures that in $mathbb{R}^3$ closed orbits are again ellipses. In this context, a deformed version of the third Keplers law is also recovered. The closing section is devoted to a discussion of the $eta<0$ case, where new and partly unexpected features arise.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا