Do you want to publish a course? Click here

An Interesting Class of Partial Differential Equations

259   0   0.0 ( 0 )
 Added by WenAn Yong
 Publication date 2007
  fields Physics
and research's language is English
 Authors Wen-an Yong




Ask ChatGPT about the research

This paper presents an observation that under reasonable conditions, many partial differential equations from mathematical physics possess three structural properties. One of them can be understand as a variant of the celebrated Onsager reciprocal relation in Modern Thermodynamics. It displays a direct relation of irreversible processes to the entropy change. We show that the properties imply various entropy dissipation conditions for hyperbolic relaxation problems. As an application of the observation, we propose an approximation method to solve relaxation problems. Moreover, the observation is interpreted physically and verified with eight (sets of) systems from different fields.



rate research

Read More

We survey the theory of attractors of nonlinear Hamiltonian partial differential equations since its appearance in 1990. These are results on global attraction to stationary states, to solitons and to stationary orbits, on adiabatic effective dynamics of solitons and their asymptotic stability. Results of numerical simulation are given. The obtained results allow us to formulate a new general conjecture on attractors of $G$ -invariant nonlinear Hamiltonian partial differential equations. This conjecture suggests a novel dynamical interpretation of basic quantum phenomena: Bohrs transitions between quantum stationary states, wave-particle duality and probabilistic interpretation.
214 - Guo-cheng Wu 2010
Fractional variational approach has gained much attention in recent years. There are famous fractional derivatives such as Caputo derivative, Riesz derivative and Riemann-Liouville derivative. Sever
180 - Guo-cheng Wu 2010
The method of characteristics has played a very important role in mathematical physics. Preciously, it was used to solve the initial value problem for partial differential equations of first order. In this paper, we propose a fractional method of characteristics and use it to solve some fractional partial differential equations.
In this paper we present the tanh method to obtain exact solutions to coupled MkDV system. This method may be applied to a variety of coupled systems of nonlinear ordinary and partial differential equations.
225 - Soon Hoe Lim , Jan Wehr 2017
We study a class of systems whose dynamics are described by generalized Langevin equations with state-dependent coefficients. We find that in the limit, in which all the characteristic time scales vanish at the same rate, the position variable of the system converges to a homogenized process, described by an equation containing additional drift terms induced by the noise. The convergence results are obtained using the main result in cite{hottovy2015smoluchowski}, whose version is proven here under a weaker spectral assumption on the damping matrix. We apply our results to study thermophoresis of a Brownian particle in a non-equilibrium heat bath.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا